Do you want to publish a course? Click here

In situ multi-spacecraft and remote imaging observations of the first CME detected by Solar Orbiter and BepiColombo

249   0   0.0 ( 0 )
 Added by Emma Davies
 Publication date 2020
  fields Physics
and research's language is English
 Authors E. E. Davies




Ask ChatGPT about the research

On 2020 April 19 a coronal mass ejection (CME) was detected in situ by Solar Orbiter at a heliocentric distance of about 0.8 AU. The CME was later observed in situ on April 20th by the Wind and BepiColombo spacecraft whilst BepiColombo was located very close to Earth. This CME presents a good opportunity for a triple radial alignment study, as the spacecraft were separated by less than 5$^circ$ in longitude. The source of the CME, which was launched on April 15th, was an almost entirely isolated streamer blowout. STEREO-A observed the event remotely from -75.1$^circ$ longitude, which is an exceptionally well suited viewpoint for heliospheric imaging of an Earth directed CME. The configuration of the four spacecraft has provided an exceptionally clean link between remote imaging and in situ observations of the CME. We have used the in situ observations of the CME at Solar Orbiter, Wind, and BepiColombo, and the remote observations of the CME at STEREO-A in combination with flux rope models to determine the global shape of the CME and its evolution as it propagated through the inner heliosphere. A clear flattening of the CME cross-section has been observed by STEREO-A, and further confirmed by comparing profiles of the flux rope models to the in situ data, where the distorted flux rope cross-section qualitatively agrees most with in situ observations of the magnetic field at Solar Orbiter. Comparing in situ observations of the magnetic field between spacecraft, we find that the dependence of the maximum (mean) magnetic field strength decreases with heliocentric distance as $r^{-1.24 pm 0.50}$ ($r^{-1.12 pm 0.14}$), in disagreement with previous studies. Further assessment of the axial and poloidal magnetic field strength dependencies suggests that the expansion of the CME is likely neither self-similar nor cylindrically symmetric.



rate research

Read More

We use the plasma density based on measurements of the probe-to-spacecraft potential in combination with magnetic field measurements by MAG to study fields and density fluctuations in the solar wind observed by Solar Orbiter during the first perihelion encounter ($sim$0.5~AU away from the Sun). In particular we use the polarization of the wave magnetic field, the phase between the compressible magnetic field and density fluctuations and the compressibility ratio (the ratio of the normalized density fluctuations to the normalized compressible fluctuations of B) to characterize the observed waves and turbulence. We find that the density fluctuations are out-of-phase with the compressible component of magnetic fluctuations for intervals of turbulence, while they are in phase for the circular-polarized waves around the proton cyclotron frequency. We analyze in detail two specific events with simultaneous presence of left- and right-handed waves at different frequencies. We compare observed wave properties to a prediction of the three-fluid (electrons, protons and alphas) model. We find a limit on the observed wavenumbers, $10^{-6} < k < 7 times 10^{-6}$~m$^{-1}$, which corresponds to wavelength $7 times 10^6 >lambda > 10^6$~m. We conclude that most likely both the left- and right-handed waves correspond to the low-wavenumber part (close to the cut-off at $Omega_{cmathrm{He}++}$) proton-band electromagnetic ion cyclotron (left-handed wave in the plasma frame confined to the frequency range $Omega_{cmathrm{He}++} < omega < Omega_{cmathrm{H}+}$) waves propagating in the outwards and inwards directions respectively. The fact that both wave polarizations are observed at the same time and the identified wave mode has a low group velocity suggests that the double-banded events occur in the source regions of the waves.
Electric field measurements of the Time Domain Sampler (TDS) receiver, part of the Radio and Plasma Waves (RPW) instrument on board Solar Orbiter, often exhibit very intense broadband wave emissions at frequencies below 20~kHz in the spacecraft frame. In this paper, we present a year-long study of electrostatic fluctuations observed in the solar wind at an interval of heliocentric distances from 0.5 to 1~AU. The RPW/TDS observations provide a nearly continuous data set for a statistical study of intense waves below the local plasma frequency. The on-board and continuously collected and processed properties of waveform snapshots allow for the mapping plasma waves at frequencies between 200~Hz and 20~kHz. We used the triggered waveform snapshots and a Doppler-shifted solution of the dispersion relation for wave mode identification in order to carry out a detailed spectral and polarization analysis. Electrostatic ion-acoustic waves are the common wave emissions observed between the local electron and proton plasma frequency in the soler wind. The occurrence rate of ion-acoustic waves peaks around perihelion at distances of 0.5~AU and decreases with increasing distances, with only a few waves detected per day at 0.9~AU. Waves are more likely to be observed when the local proton moments and magnetic field are highly variable. A more detailed analysis of more than 10000 triggered waveform snapshots shows the mean wave frequency at about 3 kHz and wave amplitude about 2.5 mV/m. The wave amplitude varies as 1/R^(1.38) with the heliocentric distance. The relative phase distribution between two components of the E-field shows a mostly linear wave polarization. Electric field fluctuations are closely aligned with the directions of the ambient field lines. Only a small number (3%) of ion-acoustic waves are observed at larger magnetic discontinuities.
Solar Orbiter was launched on February 10, 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in-situ sensing. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure the low frequency DC electric fields. In this paper we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular we investigate the possibility of using Solar Orbiters DC electric and magnetic field data to estimate the solar wind speed. We use deHoffmann-Teller (HT) analysis based on measurements of the electric and magnetic fields to find the velocity of solar wind current sheets which minimizes a single component of the electric field. By comparing the HT velocity to proton velocity measured by the Proton and Alpha particle Sensor (PAS) we develop a simple model for the effective antenna length, $L_text{eff}$ of the E-field probes. We then use the HT method to estimate the speed of the solar wind. Using the HT method, we find that the observed variations in $E_y$ are often in excellent agreement with the variations in the magnetic field. The magnitude of $E_y$, however, is uncertain due to the fact that the $L_text{eff}$ depends on the plasma environment. We derive an empirical model relating $L_text{eff}$ to the Debye length, which we can use to improve the estimate of $E_y$ and consequently the estimated solar wind speed. The low frequency electric field provided by RPW is of high quality. Using deHoffmann-Teller analysis, Solar Orbiters magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data is unavailable.
Aims.We aim to locate the origin of a stealth coronal mass ejection (CME) detected in situ by the MAG instrument on board Solar Orbiter, and make connections between the CME observed at the Sun, and the interplanetary CME (ICME) measured in situ. Methods. Remote sensing data are analysed using advanced image processing techniques to identify the source region of the stealth CME, and the global magnetic field at the time of the eruption is examined using Potential Field Source Surface (PFSS) models. The observations of the stealth CME at the Sun are compared with the magnetic field measured by the Solar Orbiter spacecraft, and plasma properties measured by the Wind spacecraft. Results. The source of the CME is found to be a quiet Sun cavity in the northern hemisphere. We find that the stealth CME has a strong magnetic field in situ, despite originating from a quiet Sun region with an extremely weak magnetic field. Conclusions. The interaction of the ICME with its surrounding environment is the likely cause of a higher magnetic field strength measured in situ. Stealth CMEs require multi-wavelength and multi-viewpoint observations in order to confidently locate the source region, however their elusive signatures still pose many problems for space weather forecasting. The findings have implications for Solar Orbiter observing sequences with instruments such as EUI that are designed to capture stealth CMEs
The recent launches of Parker Solar Probe (PSP), Solar Orbiter (SO) and BepiColombo, along with several older spacecraft, have provided the opportunity to study the solar wind at multiple latitudes and distances from the Sun simultaneously. We take advantage of this unique spacecraft constellation, along with low solar activity across two solar rotations between May and July 2020, to investigate how the solar wind structure, including the Heliospheric Current Sheet (HCS), varies with latitude. We visualise the sector structure of the inner heliosphere by ballistically mapping the polarity and solar wind speed from several spacecraft onto the Suns source surface. We then assess the HCS morphology and orientation with the in situ data and compare with a predicted HCS shape. We resolve ripples in the HCS on scales of a few degrees in longitude and latitude, finding that the local orientation of sector boundaries were broadly consistent with the shape of the HCS but were steepened with respect to a modelled HCS at the Sun. We investigate how several CIRs varied with latitude, finding evidence for the compression region affecting slow solar wind outside the latitude extent of the faster stream. We also identified several transient structures associated with HCS crossings, and speculate that one such transient may have disrupted the local HCS orientation up to five days after its passage. We have shown that the solar wind structure varies significantly with latitude, with this constellation providing context for solar wind measurements that would not be possible with a single spacecraft. These measurements provide an accurate representation of the solar wind within $pm 10^{circ}$ latitude, which could be used as a more rigorous constraint on solar wind models and space weather predictions. In the future, this range of latitudes will increase as SOs orbit becomes more inclined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا