No Arabic abstract
Free electrons with a helical phase front, referred to as twisted electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beams OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electrons OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.
Quantum complementarity states that particles, e.g. electrons, can exhibit wave-like properties such as diffraction and interference upon propagation. textit{Electron waves} defined by a helical wavefront are referred to as twisted electrons~cite{uchida:10,verbeeck:10,mcmorran:11}. These electrons are also characterised by a quantized and unbounded magnetic dipole moment parallel to their propagation direction, as they possess a net charge of $-|e|$~cite{bliokh:07}. When interacting with magnetic materials, the wavefunctions of twisted electrons are inherently modified~cite{lloyd:12b,schattschneider:14a,asenjo:14}. Such variations therefore motivate the need to analyze electron wavefunctions, especially their wavefronts, in order to obtain information regarding the materials structure~cite{harris:15}. Here, we propose, design, and demonstrate the performance of a device for measuring an electrons azimuthal wavefunction, i.e. its orbital angular momentum (OAM) content. Our device consists of nanoscale holograms designed to introduce astigmatism onto the electron wavefunctions and spatially separate its phase components. We sort pure and superposition OAM states of electrons ranging within OAM values of $-10$ and $10$. We employ the device to analyze the OAM spectrum of electrons having been affected by a micron-scale magnetic dipole, thus establishing that, with a midfield optical configuration, our sorter can be an instrument for nano-scale magnetic spectroscopy.
Free electron beams that carry high values of orbital angular momentum (OAM) possess large magnetic moments along the propagation direction. This makes them an ideal probe for measuring the electronic and magnetic properties of materials, and for fundamental experiments in magnetism. However, their generation requires the use of complex diffractive elements, which usually take the form of nano-fabricated holograms. Here, we show how the limitations of focused ion beam milling in the fabrication of such holograms can be overcome by using electron beam lithography. We demonstrate experimentally the realization of an electron vortex beam with the largest OAM value that has yet been reported (L = 1000hbar), paving the way for even more demanding demonstrations and applications of electron beam shaping.
Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focussed on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multi-pinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.
We consider the problem of discriminating macromolecular structures in an electron microscope, through a specific beam shaping technique. Our approach is based on maximizing the which-molecule information extracted from the state of each electron. To this aim, the optimal observables are derived within the framework of quantum state discrimination, which allows one to fully account from the quantum character of the probe. We simulate the implementation of such optimal observable on a generalized orbital angular momentum (OAM) sorter and benchmark its performance against the best known real space approach.
This is a brief review on the theoretical interpretation of the Aharonov-Bohm effect, which also contains our new insight into the problem. A particular emphasis is put on the unique role of electron orbital angular momentum, especially viewed from the novel concept of the physical component of the gauge field, which has been extensively discussed in the context of the nucleon spin decomposition problem as well as the photon angular momentum decomposition problem. Practically, we concentrate on the frequently discussed idealized setting of the Aharonov-Bohm effect, i.e. the interference phenomenon of the electron beam passing around the infinitely-long solenoid. One of the most puzzling observations in this Aharonov-Bohm solenoid effect is that the pure-gauge potential outside the solenoid appears to carry non-zero orbital angular momentum. Through the process of tracing its dynamical origin, we try to answer several fundamental questions of the Aharonov-Bohm effect, which includes the question about the reality of the electromagnetic potential, the gauge-invariance issue, and the non-locality interpretation, etc.