Do you want to publish a course? Click here

The role of electron orbital angular momentum in the Aharonov-Bohm effect revisited

90   0   0.0 ( 0 )
 Added by Masashi Wakamatsu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is a brief review on the theoretical interpretation of the Aharonov-Bohm effect, which also contains our new insight into the problem. A particular emphasis is put on the unique role of electron orbital angular momentum, especially viewed from the novel concept of the physical component of the gauge field, which has been extensively discussed in the context of the nucleon spin decomposition problem as well as the photon angular momentum decomposition problem. Practically, we concentrate on the frequently discussed idealized setting of the Aharonov-Bohm effect, i.e. the interference phenomenon of the electron beam passing around the infinitely-long solenoid. One of the most puzzling observations in this Aharonov-Bohm solenoid effect is that the pure-gauge potential outside the solenoid appears to carry non-zero orbital angular momentum. Through the process of tracing its dynamical origin, we try to answer several fundamental questions of the Aharonov-Bohm effect, which includes the question about the reality of the electromagnetic potential, the gauge-invariance issue, and the non-locality interpretation, etc.



rate research

Read More

57 - A M Stewart 2016
When the magnetic vector potential is expressed in terms of the magnetic field it, is found to be explicitly non-local in space. This gives support to the conclusions of Aharonov et al. in a recent comment, that the Aharonov-Bohm effect may be interpreted as being either due to a local gauge potential or else due to non-local gauge-invariant fields but not due to local gauge-invariant fields.
Through tunneling, or barrier penetration, small wavefunction tails can enter a finitely shielded cylinder with a magnetic field inside. When the shielding increases to infinity the Lorentz force goes to zero together with these tails. However, it is shown, by considering the radial derivative of the wavefunction on the cylinder surface, that a flux dependent force remains. This force explains in a natural way the Aharonov-Bohm effect in the idealized case of infinite shielding.
192 - A. M. Stewart 2012
When the electromagnetic potentials are expressed in the Coulomb gauge in terms of the electric and magnetic fields rather than the sources responsible for these fields they have a simple form that is non-local i.e. the potentials depend on the fields at every point in space. It is this non-locality of classical electrodynamics that is at first instance responsible for the puzzle associated with the Aharonov-Bohm effect: that its interference pattern is affected by fields in a region of space that the electron beam never enters.
80 - C. Jorg 2020
The discovery of artificial gauge fields, controlling the dynamics of uncharged particles that otherwise elude the influence of standard electric or magnetic fields, has revolutionized the field of quantum simulation. Hence, developing new techniques to induce those fields is essential to boost quantum simulation in photonic structures. Here, we experimentally demonstrate in a photonic lattice the generation of an artificial gauge field by modifying the input state, overcoming the need to modify the geometry along the evolution or imposing the presence of external fields. In particular, we show that an effective magnetic flux naturally appears when light beams carrying orbital angular momentum are injected into waveguide lattices with certain configurations. To demonstrate the existence of that flux, we measure the resulting Aharonov-Bohm caging effect. Therefore, we prove the possibility of switching on and off artificial gauge fields by changing the topological charge of the input state, paving the way to access different topological regimes in one single structure, which represents an important step forward for optical quantum simulation.
The Aharanov-Bohm (AB) effect, which predicts that a magnetic field strongly influences the wave function of an electrically charged particle, is investigated in a three site system in terms of the quantum control by an additional dephasing source. The AB effect leads to a non-monotonic dependence of the steady-state current on the gauge phase associated with the molecular ring. This dependence is sensitive to site energy, temperature, and dephasing, and can be explained using the concept of the dark state. Although the phase effect vanishes in the steady-state current for strong dephasing, the phase dependence remains visible in an associated waiting-time distribution, especially at short times. Interestingly, the phase rigidity (i.e., the symmetry of the AB phase) observed in the steady-state current is now broken in the waiting-time statistics, which can be explained by the interference between transfer pathways.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا