No Arabic abstract
In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission. Our findings are: (1) The sum of the mean nonthermal energy of flare-accelerated particles ($E_{mathrm{nt}}$), the energy of direct heating ($E_{mathrm{dir}}$), and the energy in coronal mass ejections ($E_{mathrm{CME}}$), which are the primary energy dissipation processes in a flare, is found to have a ratio of $(E_{mathrm{nt}}+E_{mathrm{dir}}+ E_{mathrm{CME}})/E_{mathrm{mag}} = 0.87 pm 0.18$, compared with the dissipated magnetic free energy $E_{mathrm{mag}}$, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs; (2) The energy partition of the dissipated magnetic free energy is: $0.51pm0.17$ in nonthermal energy of $ge 6$ keV electrons, $0.17pm0.17$ in nonthermal $ge 1$ MeV ions, $0.07pm0.14$ in CMEs, and $0.07pm0.17$ in direct heating; (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model; (4) The bolometric luminosity in white-light flares is comparable with the thermal energy in soft X-rays (SXR); (5) Solar Energetic Particle (SEP) events carry a fraction $approx 0.03$ of the CME energy, which is consistent with CME-driven shock acceleration; and (6) The warm-target model predicts a lower limit of the low-energy cutoff at $e_c approx 6$ keV, based on the mean differential emission measure (DEM) peak temperature of $T_e=8.6$ MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.
In this study we test 30 variants of 5 physical scaling laws that describe different aspects of solar flares. We express scaling laws in terms of the magnetic potential field energy $E_p$, the mean potential field strength $B_p$, the free energy $E_{free}$, the dissipated magnetic flare energy $E_{diss}$, the mean loop length scale $L$, the mean helically twisted flux tube radius $R$, the sunspot radius $r$, the emission measure-weighted flare temperature $T_w$, the electron density $n_e$, and the total emission measure $EM$, measured from a data set of $lapprox 400$ GOES M- and X-class flare events. The 5 categories of physical scaling laws include (i) a scaling law of the potential-field energy, (ii) a scaling law for helical twisting, (iii) a scaling law for Petschek-type magnetic reconnection, (iv) the Rosner-Tucker-Vaiana scaling law, and (v) the Shibata-Yokoyama scaling law. We test the self-consistency of these theoretical scaling laws with observed parameters by requiring two conditions: a cross-corrleation coefficient of CCC$>$0.5 between the observed and theoretically predicted scaling laws, and a linear regression fit with a slope of $alpha approx 1$. With these two criteria we find that 10 out of the 30 tested scaling law variants are consistent with the observed data, which strongly corroborates the existence and validity of the tested flare scaling laws.
We report on the spatial relationship between solar flares and coronal mass ejections (CMEs) observed during 1996-2005 inclusive. We identified 496 flare-CME pairs considering limb flares (distance from central meridian > 45 deg) with soft X-ray flare size > C3 level. The CMEs were detected by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO). We investigated the flare positions with respect to the CME span for the events with X-class, M-class, and C-class flares separately. It is found that the most frequent flare site is at the center of the CME span for all the three classes, but that frequency is different for the different classes. Many X-class flares often lie at the center of the associated CME, while C-class flares widely spread to the outside of the CME span. The former is different from previous studies, which concluded that no preferred flare site exists. We compared our result with the previous studies and conclude that the long-term LASCO observation enabled us to obtain the detailed spatial relation between flares and CMEs. Our finding calls for a closer flare-CME relationship and supports eruption models typified by the CSHKP magnetic reconnection model.
Aims: We investigate whether solar coronal mass ejections are driven mainly by coupling to the ambient solar wind or through the release of internal magnetic energy. Methods: We examine the energetics of 39 flux-rope like coronal mass ejections (CMEs) from the Sun using data in the distance range $sim$ 2--20 $R_{odot}$ from the Large Angle Spectroscopic Coronograph (LASCO) aboard the Solar and Heliospheric Observatory (SOHO). This comprises a complete sample of the best examples of flux-rope CMEs observed by LASCO in 1996-2001. Results: We find that 69% of the CMEs in our sample experience a clearly identifiable driving power in the LASCO field of view. For the CMEs that are driven, we examine if they might be deriving most of their driving power by coupling to the solar wind. We do not find conclusive evidence in favor of this hypothesis. On the other hand, we find that their internal magnetic energy is a viable source of the required driving power. We have estimated upper and lower limits on the power that can possibly be provided by the internal magnetic field of a CME. We find that, on average, the lower limit to the available magnetic power is around 74% of what is required to drive the CMEs, while the upper limit can be as much as an order of magnitude larger.
Context: Metric type II bursts are the most direct diagnostic of shock waves in the solar corona. Aims: There are two main competing views about the origin of coronal shocks: that they originate in either blast waves ignited by the pressure pulse of a flare or piston-driven shocks due to coronal mass ejections (CMEs). We studied three well-observed type II bursts in an attempt to place tighter constraints on their origins. Methods: The type II bursts were observed by the ARTEMIS radio spectrograph and imaged by the Nanc{c}ay Radioheliograph (NRH) at least at two frequencies. To take advantage of projection effects, we selected events that occurred away from disk center. Results: In all events, both flares and CMEs were observed. In the first event, the speed of the shock was about 4200 km/s, while the speed of the CME was about 850 km/s. This discrepancy ruled out the CME as the primary shock driver. The CME may have played a role in the ignition of another shock that occurred just after the high speed one. A CME driver was excluded from the second event as well because the CMEs that appeared in the coronagraph data were not synchronized with the type II burst. In the third event, the kinematics of the CME which was determined by combining EUV and white light data was broadly consistent with the kinematics of the type II burst, and, therefore, the shock was probably CME-driven. Conclusions: Our study demonstrates the diversity of conditions that may lead to the generation of coronal shocks.
Solar energetic particle (SEP) events are related to flares and coronal mass ejections (CMEs). This work is a new investigation of statistical relationships between SEP peak intensities - deka-MeV protons and near-relativistic electrons - and characteristic quantities of the associated solar activity. We consider the speed of the CME and quantities describing the flare-related energy release: peak flux and fluence of soft X-ray (SXR) emission, fluence of microwave emission. The sample comprises 38 SEP events associated with strong SXR bursts (classes M and X) in the western solar hemisphere between 1997 and 2006, and where the flare-related particle acceleration is accompanied by radio bursts indicating electron escape to the interplanetary space. The main distinction of the present statistical analysis from earlier work is that besides the classical Pearson correlation coefficient the partial correlation coefficients are calculated in order to disentangle the effects of correlations between the solar parameters themselves. The classical correlation analysis shows the usual picture of correlations with broad scatter between SEP peak intensities and the different parameters of solar activity, and strong correlations between the solar activity parameters themselves. The partial correlation analysis shows that the only parameters that affect significantly the SEP intensity are the CME speed and the SXR fluence. The SXR peak flux and the microwave fluence have no additional contribution. We conclude that these findings bring statistical evidence that both flare acceleration and CME shock acceleration contribute to the deka-MeV proton and near-relativistic electron populations in large SEP events.