Do you want to publish a course? Click here

Conducting interface in oxide homojunction: understanding of superior properties in black TiO2

230   0   0.0 ( 0 )
 Added by Xujie Lu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Black TiO2 nanoparticles with a crystalline-core and amorphous-shell structure exhibit superior optoelectronic properties in comparison with pristine TiO2. The fundamental mechanisms underlying these enhancements, however, remain unclear, largely due to the inherent complexities and limitations of powder materials. Here, we fabricate TiO2 homojunction films consisting of an oxygen-deficient amorphous layer on top of a highly crystalline layer, to simulate the structural/functional configuration of black TiO2 nanoparticles. Metallic conduction is achieved at the crystalline-amorphous homointerface via electronic interface reconstruction, which we show to be the main reason for the superior properties of black TiO2. This work not only achieves an unprecedented understanding of black TiO2, but also provides a new perspective for investigating carrier generation and transport behavior at oxide interfaces, which are of tremendous fundamental and technological interest.



rate research

Read More

The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.
In this paper we study the possible relation between the electronic and magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism found in undoped TiO2 films grown on LaAlO$_3$. We concentrate on the role played by structural relaxation and interfacial oxygen vacancies. LaAlO3 has a layered structure along the (001) direction with alternating LaO and AlO2 planes, with nominal charges of +1 and -1, respectively. As a consequence of that, an oxygen deficient TiO2 film with anatase structure will grow preferently on the AlO2 surface layer. We have therefore performed ab-initio calculations for superlattices with TiO2/AlO2 interfaces with interfacial oxygen vacancies. Our main results are that vacancies lead to a change in the valence state of neighbour Ti atoms but not necessarily to a magnetic solution and that the appearance of magnetism depends also on structural details, such as second neighbor positions. These results are obtained using both the LSDA and LSDA+U approximations.
Oxide heterointerfaces constitute a rich platform for realizing novel functionalities in condensed matter. A key aspect is the strong link between structural and electronic properties, which can be modified by interfacing materials with distinct lattice symmetries. Here we determine the effect of the cubic-tetragonal distortion of $text{SrTiO}_3$ on the electronic properties of thin films of $text{SrIrO}_3$, a topological crystalline metal hosting a delicate interplay between spin-orbit coupling and electronic correlations. We demonstrate that below the transition temperature at 105 K, $text{SrIrO}_3$ orthorhombic domains couple directly to tetragonal domains in $text{SrTiO}_3$. This forces the in-phase rotational axis to lie in-plane and creates a binary domain structure in the $text{SrIrO}_3$ film. The close proximity to the metal-insulator transition in ultrathin $text{SrIrO}_3$ causes the individual domains to have strongly anisotropic transport properties, driven by a reduction of bandwidth along the in-phase axis. The strong structure-property relationships in perovskites make these compounds particularly suitable for static and dynamic coupling at interfaces, providing a promising route towards realizing novel functionalities in oxide heterostructures.
This letter reports on the magnetic properties of Ti1-xCoxO2 anatase phase nanopowders with different Co contents. It is shown that oxygen vacancies play a fundamental role in promoting the long-range ferromagnetic order in the material studied, in addition to the transition-metal doping. Furthermore, the results allow ruling out the premise of a strict connection between Co clustering and the ferromagnetism observed in the Co:TiO2 anatase system.
The availability of low-index rutile TiO2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxial growth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO2(001) surfaces can be prepared with an atomically ordered reconstructed surface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surface energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxial growth of TiO2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا