Do you want to publish a course? Click here

Atomically flat reconstructed rutile TiO2(001) surfaces for oxide film growth

164   0   0.0 ( 0 )
 Added by Paul Snijders
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The availability of low-index rutile TiO2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxial growth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO2(001) surfaces can be prepared with an atomically ordered reconstructed surface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surface energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxial growth of TiO2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.



rate research

Read More

Present study investigates the photoabsorption properties of single crystal rutile TiO2 (110) surfaces after they have been implanted with low fluence of Cobalt ions. The surfaces, after implantation, demonstrate fabrication of nanostructures and anisotropic nano-ripple patterns. Creation of oxygen vacancies (Ti3+ states) as well as band gap modification for these samples is also observed. Results presented here demonstrate that fabrication of self organized nanostructures and development of oxygen vacancies, upon cobalt implantation, promote the enhancement of photoabsorbance in both UV (2 times) and visible (5 times) regimes. These investigations on nanostructured TiO2 surfaces can be important for photo- catalysis.
We report on structural, magnetic and electronic properties of Co-implanted TiO2 rutile single crystals for different implantation doses. Strong ferromagnetism at room temperature and above is observed in TiO2 rutile plates after cobalt ion implantation, with magnetic parameters depending on the cobalt implantation dose. While the structural data indicate the presence of metallic cobalt clusters, the multiplet structure of the Co L3 edge in the XAS spectra gives clear evidence for a substitutional Co 2+ state. The detailed analysis of the structural and magnetic properties indicates that there are two magnetic phases in Co-implanted TiO2 plates. One is a ferromagnetic phase due to the formation of long range ferromagnetic ordering between implanted magnetic cobalt ions in the rutile phase, and the second one is a superparamagnetic phase originates from the formation of metallic cobalt clusters in the implanted region. Using x-ray resonant magnetic scattering, the element specific magnetization of cobalt, oxygen and titanium in Co-implanted TiO2 single crystals are investigated. Magnetic dichroism was observed at the Co L edges as well as at the O K edge. The interaction mechanism, which leads to ferromagnetic ordering of substituted cobalt ions in the host matrix, is also discussed.
Elucidating the details of the electron-phonon coupling in semiconductors and insulators is a topic of pivotal interest, as it governs the transport mechanisms and is responsible for various phenomena such as spectral-weight transfers to phonon sidebands and self-trapping. Here, we investigate the influence of the electron-phonon interaction on the excitonic peaks of rutile TiO$_2$, revealing a strong anisotropic polarization dependence with increasing temperature, namely an anomalous blueshift for light polarized along the a-axis and a conventional redshift for light polarized along the c-axis. By employing many-body perturbation theory, we identify two terms in the electron-phonon interaction Hamiltonian that contribute to the anomalous blueshift of the a-axis exciton. Our approach paves the way to a complete ab initio treatment of the electron-phonon interaction and of its influence on the optical spectra of polar materials.
Aurivillius ferroelectric $Bi_2WO_6$ (BWO) encompasses a broad range of functionalities, including robust fatigue-free ferroelectricity, high photocatalytic activity, and ionic conductivity. Despite these promising characteristics, an in-depth study on the growth of BWO thin films and ferroelectric characterization, especially at the atomic scale, is still lacking. Here, we report pulsed laser deposition (PLD) of BWO thin films on (001) $SrTiO_3$ substrates and characterization of ferroelectricity using the scanning transmission electron microscopy (STEM) and piezoresponse force microscopy (PFM) techniques. We show that the background oxygen gas pressure used during PLD growth mainly determines the phase stability of BWO films, whereas the influence of growth temperature is comparatively minor. Atomically resolved STEM study of a fully strained BWO film revealed collective in-plane polar off-centering displacement of W atoms. We estimated the spontaneous polarization value based on polar displacement mapping to be about 54 $pm$ 4 ${mu}C cm^{-2}$, which is in good agreement with the bulk polarization value. Furthermore, we found that pristine film is composed of type-I and type-II domains, with mutually orthogonal polar axes. Complementary PFM measurements further elucidated that the coexisting type-I and type-II domains formed a multidomain state that consisted of 90$deg$ domain walls (DWs) alongside multiple head-to-head and tail-to-tail 180$deg$ DWs. Application of an electrical bias led to in-plane 180$deg$ polarization switching and 90$deg$ polarization rotation, highlighting a unique aspect of domain switching, which is immune to substrate-induced strain.
212 - Kai Chang , Peng Deng , Teng Zhang 2015
The stoichiometric 111 iron-based superconductor, LiFeAs, has attacted great research interest in recent years. For the first time, we have successfully grown LiFeAs thin film by molecular beam epitaxy (MBE) on SrTiO3(001) substrate, and studied the interfacial growth behavior by reflection high energy electron diffraction (RHEED) and low-temperature scanning tunneling microscope (LT-STM). The effects of substrate temperature and Li/Fe flux ratio were investigated. Uniform LiFeAs film as thin as 3 quintuple-layer (QL) is formed. Superconducting gap appears in LiFeAs films thicker than 4 QL at 4.7 K. When the film is thicker than 13 QL, the superconducting gap determined by the distance between coherence peaks is about 7 meV, close to the value of bulk material. The ex situ transport measurement of thick LiFeAs film shows a sharp superconducting transition around 16 K. The upper critical field, Hc2(0)=13.0 T, is estimated from the temperature dependent magnetoresistance. The precise thickness and quality control of LiFeAs film paves the road of growing similar ultrathin iron arsenide films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا