Do you want to publish a course? Click here

Structure of a model TiO2 photocatalytic interface

48   0   0.0 ( 0 )
 Added by Gabriele Tocci GT
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.



rate research

Read More

In this paper we study the possible relation between the electronic and magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism found in undoped TiO2 films grown on LaAlO$_3$. We concentrate on the role played by structural relaxation and interfacial oxygen vacancies. LaAlO3 has a layered structure along the (001) direction with alternating LaO and AlO2 planes, with nominal charges of +1 and -1, respectively. As a consequence of that, an oxygen deficient TiO2 film with anatase structure will grow preferently on the AlO2 surface layer. We have therefore performed ab-initio calculations for superlattices with TiO2/AlO2 interfaces with interfacial oxygen vacancies. Our main results are that vacancies lead to a change in the valence state of neighbour Ti atoms but not necessarily to a magnetic solution and that the appearance of magnetism depends also on structural details, such as second neighbor positions. These results are obtained using both the LSDA and LSDA+U approximations.
Black TiO2 nanoparticles with a crystalline-core and amorphous-shell structure exhibit superior optoelectronic properties in comparison with pristine TiO2. The fundamental mechanisms underlying these enhancements, however, remain unclear, largely due to the inherent complexities and limitations of powder materials. Here, we fabricate TiO2 homojunction films consisting of an oxygen-deficient amorphous layer on top of a highly crystalline layer, to simulate the structural/functional configuration of black TiO2 nanoparticles. Metallic conduction is achieved at the crystalline-amorphous homointerface via electronic interface reconstruction, which we show to be the main reason for the superior properties of black TiO2. This work not only achieves an unprecedented understanding of black TiO2, but also provides a new perspective for investigating carrier generation and transport behavior at oxide interfaces, which are of tremendous fundamental and technological interest.
The size of the band gap and the energy position of the band edges make several oxynitride semiconductors promising candidates for efficient hydrogen and oxygen production under solar light illumination. The intense research efforts dedicated to oxynitride materials have unveiled the majority of their most important properties. However, two crucial aspects have received much less attention. One is the critical issue of the compositional/structural surface modifications occurring during operation and how these affect the photoelectrochemical performance. The second concerns the relation between the electrochemical response and the crystallographic surface orientation of the oxynitride semiconductor. These are indeed topics of fundamental importance since it is exactly at the surface where the visible light-driven electrochemical reaction takes place. In contrast to conventional powder samples, thin films represent the best model system for these investigations. This study reviews current state-of-the-art of oxynitride thin film fabrication and characterization before focusing on LaTiO2N selected as representative photocatalyst. We report the investigation of the initial physicochemical evolution of the surface. Then we show that, after stabilization, the absorbed photon-to-current conversion efficiency of epitaxial thin films can differ by about 50% for different crystallographic surface orientations and be up to 5 times larger than for polycrystalline samples.
Interface of transition metal dichalcogenide (TMDC) and high-k dielectric transition metal oxides (TMO) had triggerred umpteen discourses due to the indubitable impact of TMO in reducing the contact resistances and restraining the Fermi-level pinning for the metal-TMDC contacts. In the present work, we focus on the unresolved tumults of large-area TMDC/TMO interfaces, grown by adopting different techniques. Here, on a pulsed laser deposited (PLD) MoS2 thin film, a layer of TiO2 is grown by using both atomic layer deposition (ALD) and PLD. These two different techniques emanate TiO2 layers with different crystalline properties, thicknesses and interfacial morphologies, subsequently influencing the electronic and optical properties of the interfaces. In addition, they manifest a boost in the extent of p-type doping with increasing thickness of TiO2, as emerged after analyzing the core-level shifts of the X-ray photoelectron spectra (XPS). Density functional analysis of the MoS2/Anatase-TiO2 interfaces, for pristine and in presence of a wide range of interfacial defects, could explain the interdependence of doping and the terminating atomic-surface of TiO2 on MoS2. The optical properties of the interface, encompassing the photoluminescence, transient absorption and z-scan two-photon absorption indicate the presence of defect-induced localized mid-gap levels in MoS2/TiO2 (PLD), resulting quenched exciton signals. On the contrary, the relatively defect-free interface in MoS2/TiO2 (ALD) demonstrates a clear presence of both A and B excitons of MoS2. From the investigation of optical properties, we indicate that MoS2/TiO2 (PLD) interface may act as a promising saturable absorber. Moreover, MoS2/TiO2 (PLD) interface had resulted a better photo-transport. A potential application of MoS2/TiO2 (PLD) is demonstrated by the fabrication of a p-type photo-transistor with the ionic-gel top gate.
Thermopower (S) for anatase TiO2 epitaxial films (n3D: 1E17-1E21 /cm3) and the gate voltage (Vg) dependence of S for thin film transistors (TFTs) based on TiO2 films were investigated to clarify the electronic density of states (DOS) around the conduction band bottom. The slope of the |S|-log n3D plots was -20 {mu}V/K, which is an order magnitude smaller than that of semiconductors (-198 {mu}V/K), and the |S| values for the TFTs increased with Vg in the low Vg region, suggesting that the extra tail states are hybridized with the original conduction band bottom.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا