Do you want to publish a course? Click here

Ab initio study of magnetism at the TiO2/LaAlO3 interface

155   0   0.0 ( 0 )
 Added by Weissman Mariana
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we study the possible relation between the electronic and magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism found in undoped TiO2 films grown on LaAlO$_3$. We concentrate on the role played by structural relaxation and interfacial oxygen vacancies. LaAlO3 has a layered structure along the (001) direction with alternating LaO and AlO2 planes, with nominal charges of +1 and -1, respectively. As a consequence of that, an oxygen deficient TiO2 film with anatase structure will grow preferently on the AlO2 surface layer. We have therefore performed ab-initio calculations for superlattices with TiO2/AlO2 interfaces with interfacial oxygen vacancies. Our main results are that vacancies lead to a change in the valence state of neighbour Ti atoms but not necessarily to a magnetic solution and that the appearance of magnetism depends also on structural details, such as second neighbor positions. These results are obtained using both the LSDA and LSDA+U approximations.



rate research

Read More

Ab-initio density functional theory (DFT) calculations of the relative stability of anatase and rutile polymorphs of TiO2 were carried using all-electron atomic orbitals methods with local density approximation (LDA). The rutile phase exhibited a moderate margin of stability of ~ 3 meV relative to the anatase phase in pristine material. From computational analysis of the formation energies of Si, Al, Fe and F dopants of various charge states across different Fermi level energies in anatase and in rutile, it was found that the cationic dopants are most stable in Ti substitutional lattice positions while formation energy is minimised for F- doping in interstitial positions. All dopants were found to considerably stabilise anatase relative to the rutile phase, suggesting the anatase to rutile phase transformation is inhibited in such systems with the dopants ranked F>Si>Fe>Al in order of anatase stabilisation strength. Al and Fe dopants were found to act as shallow acceptors with charge compensation achieved through the formation of mobile carriers rather than the formation of anion vacancies.
By using ab initio methods on different levels we study the magnetic ground state of (finite) atomic wires deposited on metallic surfaces. A phenomenological model based on symmetry arguments suggests that the magnetization of a ferromagnetic wire is aligned either normal to the wire and, generally, tilted with respect to the surface normal or parallel to the wire. From a first principles point of view, this simple model can be best related to the so--called magnetic force theorem calculations being often used to explore magnetic anisotropy energies of bulk and surface systems. The second theoretical approach we use to search for the canted magnetic ground state is first principles adiabatic spin dynamics extended to the case of fully relativistic electron scattering. First, for the case of two adjacent Fe atoms an a Cu(111) surface we demonstrate that the reduction of the surface symmetry can indeed lead to canted magnetism. The anisotropy constants and consequently the ground state magnetization direction are very sensitive to the position of the dimer with respect to the surface. We also performed calculations for a seven--atom Co chain placed along a step edge of a Pt(111) surface. As far as the ground state spin orientation is concerned we obtain excellent agreement with experiment. Moreover, the magnetic ground state turns out to be slightly noncollinear.
128 - L.A. Errico , 2008
Using the first-principles density-functional approach, magnetic properties of Mn-, Fe-, Co-, and Ni-doped rutile TiO2 were investigated for two different impurity concentrations (25% and 6.25%). Calculations were performed with the Full-Potential Linearized-Augmented Plane Waves (FLAPW) method, assuming that the magnetic impurities substitutionally replace the Ti ions. Our results show that the systems (with the exception of Ni-doped TiO2) are ferromagnetic. We also found that polarization mainly occurs at the impurity sites, and the magnetic moments of the impurities are independent of the impurity concentration.
We have investigated the initial growth of Fe on GaAs(110) by means of density functional theory. In contrast to the conventionally used (001)-surface the (110)-surface does not reconstruct. Therefore, a flat interface and small diffusion can be expected, which makes Fe/GaAs(110) a possible candidate for spintronic applications. Since experimentally, the actual quality of the interface seems to depend on the growth conditions, e.g., on the flux rate, we simulate the effect of different flux rates by different Fe coverages of the semiconductor surface. Systems with low coverages are highly diffusive. With increasing amount of Fe, i.e., higher flux rates, a flat interface becomes more stable. The magnetic structure strongly depends on the Fe coverage but no quenching of the magnetic moments is observed in our calculations.
In a recent publication (S. Dong et al., Phys. Rev. Lett.103, 127201 (2009)), two (related) mechanisms were proposed to understand the intrinsic exchange bias present in oxides heterostructures involving G-type antiferromagnetic perovskites. The first mechanism is driven by the Dzyaloshinskii-Moriya interaction, which is a spin-orbit coupling effect. The second is induced by the ferroelectric polarization, and it is only active in heterostructures involving multiferroics. Using the SrRuO$_3$/SrMnO$_3$ superlattice as a model system, density-functional calculations are here performed to verify the two proposals. This proof-of-principle calculation provides convincing evidence that qualitatively supports both proposals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا