No Arabic abstract
A model algorithm is proposed to study subsequent partitions of complex networks describing social structures. The partitions are supposed to appear as actions of rivaling leaders corresponding to nodes with large degrees. The condition of a partition is that the distance between two leaders is at least three links. This ensures that the layer of nearest neighbours of each leader remains attached to him. As a rule, numerically calculated size distribution of fragments of scale-free Albert-Barabasi networks reveals one large fragment which contains the original leader (hub of the network), and a number of small fragments with opponents that are described by two Weibull distributions. Numerical simulations and mean-field theory reveal that size of the larger fragment scales as the square root of the initial network size. The algorithm is applied to the data on political blogs in U.S. (L. Adamic and N. Glance, Proc. WWW-2005). The obtained fragments are clearly polarized; either they belong to Democrats, or to the GOP.
Social networks constitute a new platform for information propagation, but its success is crucially dependent on the choice of spreaders who initiate the spreading of information. In this paper, we remove edges in a network at random and the network segments into isolated clusters. The most important nodes in each cluster then form a group of influential spreaders, such that news propagating from them would lead to an extensive coverage and minimal redundancy. The method well utilizes the similarities between the pre-percolated state and the coverage of information propagation in each social cluster to obtain a set of distributed and coordinated spreaders. Our tests on the Facebook networks show that this method outperforms conventional methods based on centrality. The suggested way of identifying influential spreaders thus sheds light on a new paradigm of information propagation on social networks.
The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability.
The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.
Social systems are in a constant state of flux with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding spreading of influence or diseases, formation of friendships, and the productivity of teams. While there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the micro-dynamics of social networks. Here we explore the dynamic social network of a densely-connected population of approximately 1000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geo-location, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-minute time slices we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores are preceded by coordination behavior in the communication networks, and demonstrating that social behavior can be predicted with high precision.
Individuals often develop reluctance to change their social relations, called secondary homebody, even though their interactions with their environment evolve with time. Some memory effect is loosely present deforcing changes. In other words, in presence of memory, relations do not change easily. In order to investigate some history or memory effect on social networks, we introduce a temporal kernel function into the Heider conventional balance theory, allowing for the quality of past relations to contribute to the evolution of the system. This memory effect is shown to lead to the emergence of aged networks, thereby perfectly describing and the more so measuring the aging process of links (social relations). It is shown that such a memory does not change the dynamical attractors of the system, but does prolong the time necessary to reach the balanced states. The general trend goes toward obtaining either global (paradise or bipolar) or local (jammed) balanced states, but is profoundly affected by aged relations. The resistance of elder links against changes decelerates the evolution of the system and traps it into so named glassy states. In contrast to balance