Do you want to publish a course? Click here

Fundamental structures of dynamic social networks

267   0   0.0 ( 0 )
 Added by Vedran Sekara Mr.
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Social systems are in a constant state of flux with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding spreading of influence or diseases, formation of friendships, and the productivity of teams. While there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the micro-dynamics of social networks. Here we explore the dynamic social network of a densely-connected population of approximately 1000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geo-location, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-minute time slices we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores are preceded by coordination behavior in the communication networks, and demonstrating that social behavior can be predicted with high precision.



rate research

Read More

It has recently become possible to record detailed social interactions in large social systems with high resolution. As we study these datasets, human social interactions display patterns that emerge at multiple time scales, from minutes to months. On a fundamental level, understanding of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution is difficult and expensive. Here, we consider the dynamic network of proximity-interactions between approximately 500 individuals participating in the Copenhagen Networks Study. We show that in order to accurately model spreading processes in the network, the dynamic processes that occur on the order of minutes are essential and must be included in the analysis.
Most infectious diseases spread on a dynamic network of human interactions. Recent studies of social dynamics have provided evidence that spreading patterns may depend strongly on detailed micro-dynamics of the social system. We have recorded every single interaction within a large population, mapping out---for the first time at scale---the complete proximity network for a densely-connected system. Here we show the striking impact of interaction-distance on the network structure and dynamics of spreading processes. We create networks supporting close (intimate network, up to ~1m) and longer distance (ambient network, up to ~10m) modes of transmission. The intimate network is fragmented, with weak ties bridging densely-connected neighborhoods, whereas the ambient network supports spread driven by random contacts between strangers. While there is no trivial mapping from the micro-dynamics of proximity networks to empirical epidemics, these networks provide a telling approximation of droplet and airborne modes of pathogen spreading. The dramatic difference in outbreak dynamics has implications for public policy and methodology of data collection and modeling.
Many real world, complex phenomena have underlying structures of evolving networks where nodes and links are added and removed over time. A central scientific challenge is the description and explanation of network dynamics, with a key test being the prediction of short and long term changes. For the problem of short-term link prediction, existing methods attempt to determine neighborhood metrics that correlate with the appearance of a link in the next observation period. Recent work has suggested that the incorporation of topological features and node attributes can improve link prediction. We provide an approach to predicting future links by applying the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to optimize weights which are used in a linear combination of sixteen neighborhood and node similarity indices. We examine a large dynamic social network with over $10^6$ nodes (Twitter reciprocal reply networks), both as a test of our general method and as a problem of scientific interest in itself. Our method exhibits fast convergence and high levels of precision for the top twenty predicted links. Based on our findings, we suggest possible factors which may be driving the evolution of Twitter reciprocal reply networks.
In this Chapter, we discuss the effects of higher-order structures on SIS-like processes of social contagion. After a brief motivational introduction where we illustrate the standard SIS process on networks and the difference between simple and complex contagions, we introduce spreading processes on higher-order structures starting from the most general formulation on hypergraphs and then moving to several mean-field and heterogeneous mean-field approaches. The results highlight the rich phenomenology brought by taking into account higher-order contagion effects: both continuous and discontinuous transitions are observed, and critical mass effects emerge. We conclude with a short discussion on the theoretical results regarding the nature of the epidemic transition and the general need for data to validate these models.
Individuals often develop reluctance to change their social relations, called secondary homebody, even though their interactions with their environment evolve with time. Some memory effect is loosely present deforcing changes. In other words, in presence of memory, relations do not change easily. In order to investigate some history or memory effect on social networks, we introduce a temporal kernel function into the Heider conventional balance theory, allowing for the quality of past relations to contribute to the evolution of the system. This memory effect is shown to lead to the emergence of aged networks, thereby perfectly describing and the more so measuring the aging process of links (social relations). It is shown that such a memory does not change the dynamical attractors of the system, but does prolong the time necessary to reach the balanced states. The general trend goes toward obtaining either global (paradise or bipolar) or local (jammed) balanced states, but is profoundly affected by aged relations. The resistance of elder links against changes decelerates the evolution of the system and traps it into so named glassy states. In contrast to balance
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا