No Arabic abstract
The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multi-layered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavour in mathematics and physics, and has potential applications to several societally relevant topics, such as power grids engineering and neural dynamics. We propose a general framework to assess stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the Master Stability Function approach. We validate our method applying it to a network of Rossler oscillators with a double layer of interactions, and show that highly rich phenomenology emerges. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely due to the true multi-layer structure of the interactions amongst the units in the network.
Transients are fundamental to ecological systems with significant implications to management, conservation, and biological control. We uncover a type of transient synchronization behavior in spatial ecological networks whose local dynamics are of the chaotic, predator-prey type. In the parameter regime where there is phase synchronization among all the patches, complete synchronization (i.e., synchronization in both phase and amplitude) can arise in certain pairs of patches as determined by the network symmetry - henceforth the phenomenon of synchronization within synchronization. Distinct patterns of complete synchronization coexist but, due to intrinsic instability or noise, each pattern is a transient and there is random, intermittent switching among the patterns in the course of time evolution. The probability distribution of the transient time is found to follow an algebraic scaling law with a divergent average transient lifetime. Based on symmetry considerations, we develop a stability analysis to understand these phenomena. The general principle of symmetry can also be exploited to explain previously discovered, counterintuitive synchronization behaviors in ecological networks.
We detail a novel class of implicit neural models. Leveraging time-parallel methods for differential equations, Multiple Shooting Layers (MSLs) seek solutions of initial value problems via parallelizable root-finding algorithms. MSLs broadly serve as drop-in replacements for neural ordinary differential equations (Neural ODEs) with improved efficiency in number of function evaluations (NFEs) and wall-clock inference time. We develop the algorithmic framework of MSLs, analyzing the different choices of solution methods from a theoretical and computational perspective. MSLs are showcased in long horizon optimal control of ODEs and PDEs and as latent models for sequence generation. Finally, we investigate the speedups obtained through application of MSL inference in neural controlled differential equations (Neural CDEs) for time series classification of medical data.
Over the past two decades, complex network theory provided the ideal framework for investigating the intimate relationships between the topological properties characterizing the wiring of connections among a systems unitary components and its emergent synchronized functioning. An increased number of setups from the real world found therefore a representation in term of graphs, while more and more sophisticated methods were developed with the aim of furnishing a realistic description of the connectivity patterns under study. In particular, a significant number of systems in physics, biology and social science features a time-varying nature of the interactions among their units. We here give a comprehensive review of the major results obtained by contemporary studies on the emergence of synchronization in time-varying networks. In particular, two paradigmatic frameworks will be described in details. The first encompasses those systems where the time dependence of the nodes connections is due to adaptation, external forces, or any other process affecting each of the links of the network. The second framework, instead, corresponds to the case in which the structural evolution of the graph is due to the movement of the nodes, or agents, in physical spaces and to the fact that interactions may be ruled by space-dependent laws in a way that connections are continuously switched on and off in the course of the time. Finally, our report ends with a short discussion on promising directions and open problems for future studies.
The characterization of various properties of real-world systems requires the knowledge of the underlying network of connections among the systems components. Unfortunately, in many situations the complete topology of this network is empirically inaccessible, and one has to resort to probabilistic techniques to infer it from limited information. While network reconstruction methods have reached some degree of maturity in the case of single-layer networks (where nodes can be connected only by one type of links), the problem is practically unexplored in the case of multiplex networks, where several interdependent layers, each with a different type of links, coexist. Even the most advanced network reconstruction techniques, if applied to each layer separately, fail in replicating the observed inter-layer dependencies making up the whole coupled multiplex. Here we develop a methodology to reconstruct a class of correlated multiplexes which includes the World Trade Multiplex as a specific example we study in detail. Our method starts from any reconstruction model that successfully reproduces some desired marginal properties, including node strengths and/or node degrees, of each layer separately. It then introduces the minimal dependency structure required to replicate an additional set of higher-order properties that quantify the portion of each nodes degree and each nodes strength that is shared and/or reciprocated across pairs of layers. These properties are found to provide empirically robust measures of inter-layer coupling. Our method allows joint multi-layer connection probabilities to be reliably reconstructed from marginal ones, effectively bridging the gap between single-layer properties and truly multiplex information.
A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network---a symmetric state---the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does such behavior---which we term asymmetry-induced synchronization (AISync)---occur in oscillator networks? Here we present the first general scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than the exception in a wide class of physical systems that can be seen as multilayer networks. Since a symmetric network in complete synchrony is the basic building block of cluster synchronization in more general networks, AISync should be common also in facilitating cluster synchronization by breaking the symmetry of the cluster subnetworks.