Do you want to publish a course? Click here

Electronic excitations stabilised by a degenerate electron gas in semiconductors

57   0   0.0 ( 0 )
 Added by Christian Nenstiel
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Excitons in semiconductors and insulators consist of fermionic subsystems, electrons and holes, whose attractive interaction facilitates bound quasiparticles with quasi-bosonic character due to even-numbered pair spins. In the presence of a degenerate electron gas, such excitons dissociate due to free carrier screening, leaving a spectrally broad and faint optical signature behind. Contrary to this expected behaviour, we have discovered pronounced emission traces in bulk, germanium-doped GaN up to 100 K, mimicking excitonic behaviour at high free electron concentrations from 3.4E19/cm3 to 8.9E19/cm3. Consequently, we show that a degenerate, three-dimensional electron gas stabilizes a novel class of quasiparticles, named collexons, by many-particle effects dominated by exchange of electrons with the Fermi gas. The observation of collexons and their stabilisation with rising doping concentration, is facilitated by a superior crystal quality due to perfect substitution of the host atom with the dopant.



rate research

Read More

Studies about the constructive aspects of noise and fluctuations in different non-linear systems have shown that the addition of external noise to systems with an intrinsic noise may result in a less noisy response. Recently, the possibility to reduce the diffusion noise in semiconductor bulk materials by adding a random fluctuating contribution to the driving static electric field has been tested. The present work extends the previous theories by considering the noise-induced effects on the electron transport dynamics in low-doped n-type GaAs samples driven by a high-frequency periodic electric field (cyclostationary conditions). By means of Monte Carlo simulations, we calculate the changes in the spectral density of the electron velocity fluctuations caused by the addition of an external correlated noise source. The results reported in this paper confirm that, under specific conditions, the presence of a fluctuating component added to an oscillating electric field can reduce the total noise power. Furthermore, we find a nonlinear behaviour of the spectral density with the noise intensity. Our study reveals that, critically depending on the external noise correlation time, the dynamical response of electrons driven by a periodic electric field receives a benefit by the constructive interplay between the fluctuating field and the intrinsic noise of the system.
Multiexcitons in monolayer WSe2 exhibit a suite of optoelectronic phenomena that are unique to those of their single exciton constituents. Here, photoluminescence action spectroscopy shows that multiexciton formation is enhanced with increasing optical excitation energy. This enhancement is attributed to the multiexciton formation processes from an electron-hole plasma and results in over 300% more multiexciton emission than at lower excitation energies at 4 K. The energetic onset of the enhancement coincides with the quasiparticle bandgap, corroborating the role of the electron-hole plasma, and the enhancement diminishes with increasing temperature. The results reveal that the strong interactions responsible for ultrafast exciton formation also affect multiexciton phenomena, and both multiexciton and single exciton states play significant roles in plasma thermalization in 2D semiconductors.
Designing molecular organic semiconductors with distinct frontier orbitals is key for the development of devices with desirable properties. Generating defined organic nanostructures with atomic precision can be accomplished by on-surface synthesis. We use this dry chemistry to introduce topological variations in a conjugated poly-para-phenylene chain in the form of meta-junctions. As evidenced by STM and LEED, we produce a macroscopically ordered, monolayer thin zigzag chain film on a vicinal silver crystal. These cross-conjugated nanostructures are expected to display altered electronic properties, which are now unravelled by highly complementary experimental techniques (ARPES and STS) and theoretical calculations (DFT and EPWE). We find that meta-junctions dominate the weakly dispersive band structure, while the bandgap is tunable by altering the linear segments length. These periodic topology effects induce significant loss of the electronic coupling between neighboring linear segments leading to partial electron confinement in the form of weakly coupled Quantum Dots. Such periodic quantum interference effects determine the overall semiconducting character and functionality of the chains.
The ability to manipulate plasmons is driving new developments in electronics, optics, sensing, energy, and medicine. Despite the massive momentum of experimental research in this direction, a predictive quantum-mechanical framework for describing electron-plasmon interactions in real materials is still missing. Here, starting from a many-body Greens function approach, we develop an ab initio approach for investigating electron-plasmon coupling in solids. As a first demonstration of this methodology, we show that electron-plasmon scattering is the primary mechanism for the cooling of hot carriers in doped silicon, it is key to explain measured electron mobilities at high doping, and it leads to a quantum zero-point renormalization of the band gap in agreement with experiment.
We study collective excitation modes of a fermionic gas of $^6$Li atoms in the BEC-BCS crossover regime. While measurements of the axial compression mode in the cigar-shaped trap close to a Feshbach resonance confirm theoretical expectations, the radial compression mode shows surprising features. In the strongly interacting molecular BEC regime we observe a negative frequency shift with increasing coupling strength. In the regime of a strongly interacting Fermi gas, an abrupt change in the collective excitation frequency occurs, which may be a signature for a transition from a superfluid to a collisionless phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا