No Arabic abstract
We consider the problem of correct measurement of a quantum entanglement in the two-body electron-electron scattering. An expression is derived for a spin correlation tensor of a pure two-electron state. A geometrical measure of a quantum entanglement as the distance between two forms of this tensor in entangled and separable cases is presented. We prove that this measure satisfies properties of a valid entanglement measure: nonnegativity, discriminance, normalization, non-growth under local operations and classical communication. This measure is calculated for a problem of electron-electron scattering. We prove that it does not depend on the azimuthal rotation angle of the second electron spin relative to the first electron spin before scattering. Finally, we specify how to find a spin correlation tensor and the related measure of a quantum entanglement in an experiment with electron-electron scattering.
The major resolution-limiting factor in cryoelectron microscopy of unstained biological specimens is radiation damage by the very electrons that are used to probe the specimen structure. To address this problem, an electron microscopy scheme that employs quantum entanglement to enable phase measurement precision beyond the standard quantum limit has recently been proposed {[}Phys. Rev. A textbf{85}, 043810{]}. Here we identify and examine in detail measurement errors that will arise in the scheme. An emphasis is given to considerations concerning inelastic scattering events because in general schemes assisted with quantum entanglement are known to be highly vulnerable to lossy processes. We find that the amount of error due both to elastic and inelastic scattering processes are acceptable provided that the electron beam geometry is properly designed.
In two recent papers (Phys. Rev. Lett. {bf 116} (2016) 033201; Phys. Rev. A {bf 94} (2016) 032331), the possibility of continuously varying the degree of entanglement between an elastically scattered electron and the valence electron of an alkali target was discussed. In order to estimate how well such a scheme may work in practice, we present results for elastic electron scattering from lithium in the energy regime of 1$-$5~eV and the full range of scattering angles $0^circ - 180^circ$. The most promising regime for Bell-correlations in this particular collision system are energies between about 1.5 eV and 3.0 eV, in an angular range around $110^circ pm 10^circ$. In addition to the relative exchange asymmetry parameter, we present the differential cross section that is important when estimating the count rate and hence the feasibility of experiments using this system.
A promising approach for multi-qubit quantum registers is to use optically addressable spins to control multiple dark electron-spin defects in the environment. While recent experiments have observed signatures of coherent interactions with such dark spins, it is an open challenge to realize the individual control required for quantum information processing. Here we demonstrate the initialisation, control and entanglement of individual dark spins associated to multiple P1 centers, which are part of a spin bath surrounding a nitrogen-vacancy center in diamond. We realize projective measurements to prepare the multiple degrees of freedom of P1 centers - their Jahn-Teller axis, nuclear spin and charge state - and exploit these to selectively access multiple P1s in the bath. We develop control and single-shot readout of the nuclear and electron spin, and use this to demonstrate an entangled state of two P1 centers. These results provide a proof-of-principle towards using dark electron-nuclear spin defects as qubits for quantum sensing, computation and networks.
In order to assess inelastic effects on two fermion entanglement production, we address an exactly solvable two-particle scattering problem where the target is an excitable scatterer. Useful entanglement, as measured by the two particle concurrence, is obtained from post-selection of oppositely scattered particle states. The $S$ matrix formalism is generalized in order to address non-unitary evolution in the propagating channels. We find the striking result that inelasticity can actually increase concurrence as compared to the elastic case by increasing the uncertainty of the single particle subspace. Concurrence zeros are controlled by either single particle resonance energies or total reflection conditions that ascertain precisely one of the electron states. Concurrence minima also occur and are controlled by entangled resonance situations were the electron becomes entangled with the scatterer, and thus does not give up full information of its state. In this model, exciting the scatterer can never fully destroy phase coherence due to an intrinsic limit to the probability of inelastic events.
{bf Abstract.} We show that two hierarchies of spin Hamilton operators admit the same spectrum. Both Hamilton operators play a central role for quantum gates in particular for the case spin-$frac12$ and the case spin-1. The spin-$frac12$, spin-1, spin-$frac32$ and spin-2 cases are studied in detail. Entanglement and mutually unbiased bases of the eigenvectors is discussed. Two triple Hamilton operators are also investigated. Both are also admitting the same spectrum.