Do you want to publish a course? Click here

Two electron entanglement enhancement by an inelastic scattering process

134   0   0.0 ( 0 )
 Added by Victor M. Villalba
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to assess inelastic effects on two fermion entanglement production, we address an exactly solvable two-particle scattering problem where the target is an excitable scatterer. Useful entanglement, as measured by the two particle concurrence, is obtained from post-selection of oppositely scattered particle states. The $S$ matrix formalism is generalized in order to address non-unitary evolution in the propagating channels. We find the striking result that inelasticity can actually increase concurrence as compared to the elastic case by increasing the uncertainty of the single particle subspace. Concurrence zeros are controlled by either single particle resonance energies or total reflection conditions that ascertain precisely one of the electron states. Concurrence minima also occur and are controlled by entangled resonance situations were the electron becomes entangled with the scatterer, and thus does not give up full information of its state. In this model, exciting the scatterer can never fully destroy phase coherence due to an intrinsic limit to the probability of inelastic events.



rate research

Read More

103 - Renwen Yu , Andrea Konev{c}na , 2021
Probing optical excitations with high resolution is important for understanding their dynamics and controlling their interaction with other photonic elements. This can be done using state-of-the-art electron microscopes, which provide the means to sample optical excitations with combined meV--sub-nm energy--space resolution. For reciprocal photonic systems, electrons traveling in opposite directions produce identical signals, while this symmetry is broken in nonreciprocal structures. Here, we theoretically investigate this phenomenon by analyzing electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) in structures consisting of magnetically biased InAs as an instance of gyrotropic nonreciprocal material. We find that the spectral features associated with excitations of InAs films depend on the electron propagation direction in both EELS and CL, and can be tuned by varying the applied magnetic field within a relatively modest sub-tesla regime. The magnetic field modifies the optical field distribution of the sampled resonances, and this in turn produces a direction-dependent coupling to the electron. The present results pave the way to the use of electron microscope spectroscopies to explore the near-field characteristics of nonreciprocal systems with high spatial resolution.
118 - Davyd Tsurikov 2016
We consider the problem of correct measurement of a quantum entanglement in the two-body electron-electron scattering. An expression is derived for a spin correlation tensor of a pure two-electron state. A geometrical measure of a quantum entanglement as the distance between two forms of this tensor in entangled and separable cases is presented. We prove that this measure satisfies properties of a valid entanglement measure: nonnegativity, discriminance, normalization, non-growth under local operations and classical communication. This measure is calculated for a problem of electron-electron scattering. We prove that it does not depend on the azimuthal rotation angle of the second electron spin relative to the first electron spin before scattering. Finally, we specify how to find a spin correlation tensor and the related measure of a quantum entanglement in an experiment with electron-electron scattering.
When a low flux of time-frequency-entangled photon pairs (EPP) illuminates a two-photon transition, the rate of two-photon absorption (TPA) can be enhanced considerably by the quantum nature of photon number correlations and frequency correlations. We present a quantum-theoretic derivation of entangled TPA (ETPA) and calculate an upper bound on the amount of quantum enhancement that is possible in such systems. The derived bounds indicate that in order to observe ETPA the experiments would need to operate at a combination of significantly higher rates of EPP illumination, molecular concentrations, and conventional TPA cross sections than are achieved in typical experiments.
173 - Jun She , Yajun Mao , Bo-Qiang Ma 2008
We analyze the left-right asymmetry of pion production in semi-inclusive deep inelastic scattering (SIDIS) process of unpolarized charged lepton on transversely polarized nucleon target. Unlike available treatments, in which some specific weighting functions are multiplied to separate theoretically motivated quantities, we do not introduce any weighting function following the analyzing method by the E704 experiment. The advantage is that this basic observable is free of any theoretical bias, although we can perform the calculation under the current theoretical framework. We present numerical calculations at both HERMES kinematics for the proton target and JLab kinematics for the neutron target. We find that with the current theoretical understanding, Sivers effect plays a key role in our analysis.
We discuss theoretically quantum interface between light and a spin polarized ensemble of atoms with the spin >= 1 based on an off-resonant Raman scattering. We present the spectral theory of the light-atoms interaction and show how particular spectral modes of quantum light couple to spatial modes of the extended atomic ensemble. We show how this interaction can be used for quantum memory storage and retrieval and for deterministic entanglement protocols. The proposed protocols are attractive due to their simplicity since they involve just a single pass of light through atoms without the need for elaborate pulse shaping or quantum feedback. As a practically relevant example we consider the interaction of a light pulse with hyperfine components of D1 line of 87Rb. The quality of the proposed protocols is verified via analytical and numerical analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا