Do you want to publish a course? Click here

Every Schnyder Drawing is a Greedy Embedding

41   0   0.0 ( 0 )
 Added by Kasun Samarasinghe
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Geographic routing is a routing paradigm, which uses geographic coordinates of network nodes to determine routes. Greedy routing, the simplest form of geographic routing forwards a packet to the closest neighbor towards the destination. A greedy embedding is a embedding of a graph on a geometric space such that greedy routing always guarantees delivery. A Schnyder drawing is a classical way to draw a planar graph. In this manuscript, we show that every Schnyder drawing is a greedy embedding, based on a generalized definition of greedy routing.

rate research

Read More

A realizer, commonly known as Schnyder woods, of a triangulation is a partition of its interior edges into three oriented rooted trees. A flip in a realizer is a local operation that transforms one realizer into another. Two types of flips in a realizer have been introduced: colored flips and cycle flips. A corresponding flip graph is defined for each of these two types of flips. The vertex sets are the realizers, and two realizers are adjacent if they can be transformed into each other by one flip. In this paper we study the relation between these two types of flips and their corresponding flip graphs. We show that a cycle flip can be obtained from linearly many colored flips. We also prove an upper bound of $O(n^2)$ on the diameter of the flip graph of realizers defined by colored flips. In addition, a data structure is given to dynamically maintain a realizer over a sequence of colored flips which supports queries, including getting a nodes barycentric coordinates, in $O(log n)$ time per flip or query.
We show that every knot can be realized as a billiard trajectory in a convex prism. This solves a conjecture of Jones and Przytycki.
A emph{Stick graph} is an intersection graph of axis-aligned segments such that the left end-points of the horizontal segments and the bottom end-points of the vertical segments lie on a `ground line, a line with slope $-1$. It is an open question to decide in polynomial time whether a given bipartite graph $G$ with bipartition $Acup B$ has a Stick representation where the vertices in $A$ and $B$ correspond to horizontal and vertical segments, respectively. We prove that $G$ has a Stick representation if and only if there are orderings of $A$ and $B$ such that $G$s bipartite adjacency matrix with rows $A$ and columns $B$ excludes three small `forbidden submatrices. This is similar to characterizations for other classes of bipartite intersection graphs. We present an algorithm to test whether given orderings of $A$ and $B$ permit a Stick representation respecting those orderings, and to find such a representation if it exists. The algorithm runs in time linear in the size of the adjacency matrix. For the case when only the ordering of $A$ is given, we present an $O(|A|^3|B|^3)$-time algorithm. When neither ordering is given, we present some partial results about graphs that are, or are not, Stick representable.
177 - David Auber , Pavel Valtr 2021
Proceedings of GD2020: This volume contains the papers presented at GD~2020, the 28th International Symposium on Graph Drawing and Network Visualization, held on September 18-20, 2020 online. Graph drawing is concerned with the geometric representation of graphs and constitutes the algorithmic core of network visualization. Graph drawing and network visualization are motivated by applications where it is crucial to visually analyse and interact with relational datasets. Information about the conference series and past symposia is maintained at http://www.graphdrawing.org. The 2020 edition of the conference was hosted by University Of British Columbia, with Will Evans as chair of the Organizing Committee. A total of 251 participants attended the conference.
73 - David Eppstein 2021
We show that several types of graph drawing in the hyperbolic plane require features of the drawing to be separated from each other by sub-constant distances, distances so small that they can be accurately approximated by Euclidean distance. Therefore, for these types of drawing, hyperbolic geometry provides no benefit over Euclidean graph drawing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا