No Arabic abstract
A emph{Stick graph} is an intersection graph of axis-aligned segments such that the left end-points of the horizontal segments and the bottom end-points of the vertical segments lie on a `ground line, a line with slope $-1$. It is an open question to decide in polynomial time whether a given bipartite graph $G$ with bipartition $Acup B$ has a Stick representation where the vertices in $A$ and $B$ correspond to horizontal and vertical segments, respectively. We prove that $G$ has a Stick representation if and only if there are orderings of $A$ and $B$ such that $G$s bipartite adjacency matrix with rows $A$ and columns $B$ excludes three small `forbidden submatrices. This is similar to characterizations for other classes of bipartite intersection graphs. We present an algorithm to test whether given orderings of $A$ and $B$ permit a Stick representation respecting those orderings, and to find such a representation if it exists. The algorithm runs in time linear in the size of the adjacency matrix. For the case when only the ordering of $A$ is given, we present an $O(|A|^3|B|^3)$-time algorithm. When neither ordering is given, we present some partial results about graphs that are, or are not, Stick representable.
We investigate the problem of drawing graphs in 2D and 3D such that their edges (or only their vertices) can be covered by few lines or planes. We insist on straight-line edges and crossing-free drawings. This problem has many connections to other challenging graph-drawing problems such as small-area or small-volume drawings, layered or track drawings, and drawing graphs with low visual complexity. While some facts about our problem are implicit in previous work, this is the first treatment of the problem in its full generality. Our contribution is as follows. We show lower and upper bounds for the numbers of lines and planes needed for covering drawings of graphs in certain graph classes. In some cases our bounds are asymptotically tight; in some cases we are able to determine exact values. We relate our parameters to standard combinatorial characteristics of graphs (such as the chromatic number, treewidth, maximum degree, or arboricity) and to parameters that have been studied in graph drawing (such as the track number or the number of segments appearing in a drawing). We pay special attention to planar graphs. For example, we show that there are planar graphs that can be drawn in 3-space on a lot fewer lines than in the plane.
We initiate the study of the following problem: Given a non-planar graph G and a planar subgraph S of G, does there exist a straight-line drawing {Gamma} of G in the plane such that the edges of S are not crossed in {Gamma} by any edge of G? We give positive and negative results for different kinds of connected spanning subgraphs S of G. Moreover, in order to enlarge the subset of instances that admit a solution, we consider the possibility of bending the edges of G not in S; in this setting we discuss different trade-offs between the number of bends and the required drawing area.
A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is $x$- and $y$-monotone. Angle-monotone graphs are $sqrt 2$-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-$theta_6$-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex $s$ to any vertex $t$ whose length is within $1 + sqrt 2$ times the Euclidean distance from $s$ to $t$. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.
Proceedings of GD2020: This volume contains the papers presented at GD~2020, the 28th International Symposium on Graph Drawing and Network Visualization, held on September 18-20, 2020 online. Graph drawing is concerned with the geometric representation of graphs and constitutes the algorithmic core of network visualization. Graph drawing and network visualization are motivated by applications where it is crucial to visually analyse and interact with relational datasets. Information about the conference series and past symposia is maintained at http://www.graphdrawing.org. The 2020 edition of the conference was hosted by University Of British Columbia, with Will Evans as chair of the Organizing Committee. A total of 251 participants attended the conference.
We study the problem of embedding graphs in the plane as good geometric spanners. That is, for a graph $G$, the goal is to construct a straight-line drawing $Gamma$ of $G$ in the plane such that, for any two vertices $u$ and $v$ of $G$, the ratio between the minimum length of any path from $u$ to $v$ and the Euclidean distance between $u$ and $v$ is small. The maximum such ratio, over all pairs of vertices of $G$, is the spanning ratio of $Gamma$. First, we show that deciding whether a graph admits a straight-line drawing with spanning ratio $1$, a proper straight-line drawing with spanning ratio $1$, and a planar straight-line drawing with spanning ratio $1$ are NP-complete, $exists mathbb R$-complete, and linear-time solvable problems, respectively, where a drawing is proper if no two vertices overlap and no edge overlaps a vertex. Second, we show that moving from spanning ratio $1$ to spanning ratio $1+epsilon$ allows us to draw every graph. Namely, we prove that, for every $epsilon>0$, every (planar) graph admits a proper (resp. planar) straight-line drawing with spanning ratio smaller than $1+epsilon$. Third, our drawings with spanning ratio smaller than $1+epsilon$ have large edge-length ratio, that is, the ratio between the length of the longest edge and the length of the shortest edge is exponential. We show that this is sometimes unavoidable. More generally, we identify having bounded toughness as the criterion that distinguishes graphs that admit straight-line drawings with constant spanning ratio and polynomial edge-length ratio from graphs that require exponential edge-length ratio in any straight-line drawing with constant spanning ratio.