No Arabic abstract
We present a computational study of terahertz optical properties of a grating-coupled plasmonic structure based on micrometer-thin InSb layers. We find two strong absorption resonances that we interpret as standing surface plasmon modes and investigate their dispersion relations, dependence on InSb thickness, and the spatial distribution of the electric field. The observed surface plasmon modes are well described by a simple theory of the air/InSb/air trilayer. The plasmonic response of the grating/InSb structure is highly sensitive to the dielectric environment and the presence of an analyte (e.g., lactose) at the InSb interface, which is promising for terahertz plasmonic sensor applications. We determine the sensor sensitivity to be 7200 nm per refractive index unit (or 0.06 THz per refractive index unit). The lower surface plasmon mode also exhibits a splitting when tuned in resonance with the vibrational mode of lactose at 1.37 THz. We propose that such interaction between surface plasmon and vibrational modes can be used as the basis for a new sensing modality that allows the detection of terahertz vibrational fingerprints of an analyte.
We propose a terahertz radiation source based on the excitation of plasma resonances in graphene structures by means of mixing two NIR laser signals with a THz difference frequency. The process is the photo-thermo-electric effect which has recently been demonstrated to be operative at THz frequencies in graphene. An antenna couples the THz radiation out of the sub-wavelength graphene element and into the far field. The emission is monochromatic with a bandwidth determined by that of the NIR laser sources. The output power of the device as a function of the emitter frequency is estimated at tens of microWatts.
We predict plasmonic mediated nucleation of pancake shaped resonant nano-cavities in metallic layers that are penetrable to laser fields. The underlying physics is that the cavity provides a narrow plasmonic resonance that maximizes its polarizability in an external field. The resonance yields a significant energy gain making the formation of such cavities highly favorable. Possible implications include nano-optics and generation of the dielectric bits in conductive films that underlie the existing optical recording phase change technology.
We demonstrated selective gas sensing with MoS2 thin-film transistors using the change in the channel conductance, characteristic transient time and low-frequency current fluctuations as the sensing parameters. The back-gated MoS2 thin-film field-effect transistors were fabricated on Si/SiO2 substrates and intentionally aged for a month to verify reliability and achieve better current stability. The same devices with the channel covered by 10 nm of Al2O3 were used as reference samples. The exposure to ethanol, acetonitrile, toluene, chloroform, and methanol vapors results in drastic changes in the source-drain current. The current can increase or decrease by more than two-orders of magnitude depending on the analyte. The reference devices with coated channel did not show any response. It was established that transient time of the current change and the normalized spectral density of the low-frequency current fluctuations can be used as additional sensing parameters for selective gas detection with thin-film MoS2 transistors.
The main challenge to exploiting plasmons for gas vibrational mode sensing is the extremely weak infrared absorption of gas species. In this work, we explore the possibility of trapping free gas molecules via surface adsorption, optical, or electrostatic fields to enhance gas-plasmon interactions and to increase plasmon sensing ability. We discuss the relative strengths of these trapping forces and found gas adsorption in a typical nanoribbon array plasmonic setup produces measurable dips in optical extinction of magnitude 0.1 % for gas concentration of about parts per thousand level.
We show that the surface of an $s$-wave superconductor decorated with a two-dimensional lattice of magnetic impurities can exhibit chiral topological superconductivity. If impurities order ferromagnetically and the superconducting surface supports a sufficiently strong Rashba-type spin-orbit coupling, Shiba sub-gap states at impurity locations can hybridize into Bogoliubov bands with non-vanishing, sometimes large, Chern number $C$. This topological superconductor supports $C$ chiral Majorana edge modes. We construct phase diagrams for model two-dimensional superconductors, accessing the dilute and dense magnetic impurity limits analytically and the intermediate regime numerically. To address potential experimental systems, we identify stable configurations of ferromagnetic iron atoms on the Pb (111) surface and conclude that ferromagnetic adatoms on Pb surfaces can provide a versatile platform for two-dimensional topological superconductivity.