Do you want to publish a course? Click here

Selective Chemical Vapor Sensing with Few-Layer MoS2 Thin-Film Transistors

183   0   0.0 ( 0 )
 Added by Alexander Balandin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrated selective gas sensing with MoS2 thin-film transistors using the change in the channel conductance, characteristic transient time and low-frequency current fluctuations as the sensing parameters. The back-gated MoS2 thin-film field-effect transistors were fabricated on Si/SiO2 substrates and intentionally aged for a month to verify reliability and achieve better current stability. The same devices with the channel covered by 10 nm of Al2O3 were used as reference samples. The exposure to ethanol, acetonitrile, toluene, chloroform, and methanol vapors results in drastic changes in the source-drain current. The current can increase or decrease by more than two-orders of magnitude depending on the analyte. The reference devices with coated channel did not show any response. It was established that transient time of the current change and the normalized spectral density of the low-frequency current fluctuations can be used as additional sensing parameters for selective gas detection with thin-film MoS2 transistors.



rate research

Read More

We have demonstrated selective gas sensing with molybdenum disulfide (MoS2) thin films transistors capped with a thin layer of hexagonal boron nitride (h-BN). The resistance change was used as a sensing parameter to detect chemical vapors such as ethanol, acetonitrile, toluene, chloroform and methanol. It was found that h-BN dielectric passivation layer does not prevent gas detection via changes in the source-drain current in the active MoS2 thin film channel. The use of h-BN cap layers (thickness H=10 nm) in the design of MoS2 thin film gas sensors improves device stability and prevents device degradation due to environmental and chemical exposure. The obtained results are important for applications of van der Waals materials in chemical and biological sensing.
We report the fabrication of ionic liquid (IL) gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility about 60 cm2V-1s-1 at 250 K in ionic liquid gated devices exceeds significantly that of comparable back-gated devices. IL-FETs display a mobility increase from about 100 cm2V-1s-1 at 180 K to about 220 cm2V-1s-1 at 77 K in good agreement with the true channel mobility determined from four-terminal measurements, ambipolar behavior with a high ON/OFF ratio >107 (104) for electrons (holes), and a near ideal sub-threshold swing of about 50 mV/dec at 250 K. We attribute the observed performance enhancement, specifically the increased carrier mobility that is limited by phonons, to the reduction of the Schottky barrier at the source and drain electrode by band bending caused by the ultrathin ionic-liquid dielectric layer.
We realize and investigate ionic liquid gated field-effect transistors (FETs) on large-area MoS2 monolayers grown by chemical vapor deposition (CVD). Under electron accumulation, the performance of these devices is comparable to that of FETs based on exfoliated flakes. FETs on CVD-grown material, however, exhibit clear ambipolar transport, which for MoS2 monolayers had not been reported previously. We exploit this property to estimate the bandgap {Delta} of monolayer MoS2 directly from the device transfer curves and find {Delta} $approx$ 2.4-2.7 eV. In the ambipolar injection regime, we observe electroluminescence due to exciton recombination in MoS2, originating from the region close to the hole-injecting contact. Both the observed transport properties and the behavior of the electroluminescence can be consistently understood as due to the presence of defect states at an energy of 250-300 meV above the top of the valence band, acting as deep traps for holes. Our results are of technological relevance, as they show that devices with useful optoelectronic functionality can be realized on large-area MoS2 monolayers produced by controllable and scalable techniques.
We report on the transport and low-frequency noise measurements of MoS2 thin-film transistors with thin (2-3 atomic layers) and thick (15-18 atomic layers) channels. The back-gated transistors made with the relatively thick MoS2 channels have advantages of the higher electron mobility and lower noise level. The normalized noise spectral density of the low-frequency 1/f noise in thick MoS2 transistors is of the same level as that in graphene. The MoS2 transistors with the atomically thin channels have substantially higher noise levels. It was established that, unlike in graphene devices, the noise characteristics of MoS2 transistors with thick channels (15-18 atomic planes) could be described by the McWhorter model. Our results indicate that the channel thickness optimization is crucial for practical applications of MoS2 thin-film transistors.
Chemical vapor deposition (CVD) allows growing transition metal dichalcogenides (TMDs) over large surface areas on inexpensive substrates. In this work, we correlate the structural quality of CVD grown MoS$_2$ monolayers (MLs) on SiO$_2$/Si wafers studied by high-resolution transmission electron microscopy (HRTEM) with high optical quality revealed in optical emission and absorption from cryogenic to ambient temperatures. We determine a defect concentration of the order of 10$^{13}$ cm$^{-2}$ for our samples with HRTEM. To have access to the intrinsic optical quality of the MLs, we remove the MLs from the SiO$_2$ growth substrate and encapsulate them in hBN flakes with low defect density, to reduce the detrimental impact of dielectric disorder. We show optical transition linewidth of 5 meV at low temperature (T=4 K) for the free excitons in emission and absorption. This is comparable to the best ML samples obtained by mechanical exfoliation of bulk material. The CVD grown MoS$_2$ ML photoluminescence is dominated by free excitons and not defects even at low temperature. High optical quality of the samples is further confirmed by the observation of excited exciton states of the Rydberg series. We optically generate valley coherence and valley polarization in our CVD grown MoS$_2$ layers, showing the possibility for studying spin and valley physics in CVD samples of large surface area.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا