Do you want to publish a course? Click here

Evidence for a Strong Topological Insulator Phase in $mathrm{ZrTe_5}$

65   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The complex electronic properties of $mathrm{ZrTe_5}$ have recently stimulated in-depth investigations that assigned this material to either a topological insulator or a 3D Dirac semimetal phase. Here we report a comprehensive experimental and theoretical study of both electronic and structural properties of $mathrm{ZrTe_5}$, revealing that the bulk material is a strong topological insulator (STI). By means of angle-resolved photoelectron spectroscopy, we identify at the top of the valence band both a surface and a bulk state. The dispersion of these bands is well captured by ab initio calculations for the STI case, for the specific interlayer distance measured in our x-ray diffraction study. Furthermore, these findings are supported by scanning tunneling spectroscopy revealing the metallic character of the sample surface, thus confirming the strong topological nature of $mathrm{ZrTe_5}$.



rate research

Read More

The interface between magnetic materials and topological insulators can drive the formation of exotic phases of matter and enable functionality through manipulation of the strong spin polarized transport. Here, we report that the spin-momentum-locked transport in the topological insulator Bi$_2$Se$_3$ is completely suppressed by scattering at a heterointerface with the kagome-lattice paramagnet, Co$_7$Se$_8$. Bi$_2$Se$_{3-}$Co$_7$Se$_{8-}$Bi$_2$Se$_3$ trilayer heterostructures were grown using molecular beam epitaxy. Magnetotransport measurements revealed a substantial suppression of the weak antilocalization effect for Co$_7$Se$_8$ at thicknesses as thin as a monolayer, indicating a strong dephasing mechanism. Bi$_{2-x}$Co$_x$Se$_3$ films, where Co is in a non-magnetic $3^+$ state, show weak antilocalization that survives to $x = 0.5$, which, in comparison with the heterostructures, suggests the unordered moments of the Co$^{2+}$ act as a far stronger dephasing element. This work highlights several important points regarding spin-polarized transport in topological insulator interfaces and how magnetic materials can be integrated with topological materials to realize both exotic phases as well as novel device functionality.
Topological states of matter originate from distinct topological electronic structures of materials. As for strong topological insulators (STIs), the topological surface (interface) is a direct consequence of electronic structure transition between materials categorized to different topological genus. Therefore, it is fundamentally interesting if such topological character can be manipulated. Besides tuning the crystal field and the strength of spin-orbital coupling (e.g., by external strain, or chemical doping), there is currently rare report on topological state induced in ordinary insulators (OIs) by the heterostructure of OI/STI. Here we report the observation of a Dirac cone topological surface state (TSS) induced on the Sb2Se3 layer up to 15 nm thick in the OI/STI heterostructure, in sharp contrast with the OI/OI heterostructure where no sign of TSS can be observed. This is evident for an induced topological state in an OI by heterostructure.
BaSn$_2$ has been shown to form as layers of buckled stanene intercalated by barium ions~cite{Kim_2008}. However, despite an apparently straightforward synthesis and significant interest in stanene as a topological material, BaSn$_2$ has been left largely unexplored, and has only recently been recognized as a potential topological insulator. Belonging to neither the lead nor bismuth chalcogenide families, it would represent a unique manifestation of the topological insulating phase. Here we present a detailed investigation of BaSn$_2$, using both {it ab initio} and experimental methods. First-principles calculations demonstrate that this overlooked material is a indeed strong topological insulator with a bulk band gap of 360meV, among the largest observed for topological insulators. We characterize the surface state dependence on termination chemistry, providing guidance for experimental efforts to measure and manipulate its topological properties. Additionally, through {it ab initio} modeling and synthesis experiments we explore the stability and accessibility of this phase, revealing a complicated phase diagram that indicates a challenging path to obtaining single crystals.
Many-body interactions can produce novel ground states in a condensed-matter system. For example, interacting electrons and holes can spontaneously form excitons, a neutral bound state, provided that the exciton binding energy exceeds the energy separation between the single particle states. Here we report on electrical transport measurements on spatially separated two-dimensional electron and hole gases with nominally degenerate energy subbands, realized in an InAs(10 nm)/GaSb(5 nm) coupled quantum well. We observe a narrow and intense maximum (~500 kOmega) in the four-terminal resistivity in the charge neutrality region, separating the electron-like and hole-like regimes, with a strong activated temperature-dependence above T = 7 K and perfect stability against quantizing magnetic fields. By quantitatively comparing our data with early theoretical predictions, we show that such unexpectedly large resistance in our nominally zero-gap semi-metal system is probably due to the formation of an excitonic insulator state.
254 - R. Lou , B.-B. Fu , Q. N. Xu 2016
By employing angle-resolved photoemission spectroscopy combined with first-principles calculations, we performed a systematic investigation on the electronic structure of LaBi, which exhibits extremely large magnetoresistance (XMR), and is theoretically predicted to possess band anticrossing with nontrivial topological properties. Here, the observations of the Fermi-surface topology and band dispersions are similar to previous studies on LaSb [Phys. Rev. Lett. 117, 127204 (2016)], a topologically trivial XMR semimetal, except the existence of a band inversion along the $Gamma$-$X$ direction, with one massless and one gapped Dirac-like surface state at the $X$ and $Gamma$ points, respectively. The odd number of massless Dirac cones suggests that LaBi is analogous to the time-reversal $Z_2$ nontrivial topological insulator. These findings open up a new series for exploring novel topological states and investigating their evolution from the perspective of topological phase transition within the family of rare-earth monopnictides.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا