Do you want to publish a course? Click here

Evidence for an excitonic insulator phase in a zero-gap InAs/GaSb bilayer

56   0   0.0 ( 0 )
 Added by Wenlong Yu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many-body interactions can produce novel ground states in a condensed-matter system. For example, interacting electrons and holes can spontaneously form excitons, a neutral bound state, provided that the exciton binding energy exceeds the energy separation between the single particle states. Here we report on electrical transport measurements on spatially separated two-dimensional electron and hole gases with nominally degenerate energy subbands, realized in an InAs(10 nm)/GaSb(5 nm) coupled quantum well. We observe a narrow and intense maximum (~500 kOmega) in the four-terminal resistivity in the charge neutrality region, separating the electron-like and hole-like regimes, with a strong activated temperature-dependence above T = 7 K and perfect stability against quantizing magnetic fields. By quantitatively comparing our data with early theoretical predictions, we show that such unexpectedly large resistance in our nominally zero-gap semi-metal system is probably due to the formation of an excitonic insulator state.

rate research

Read More

The interplay between topology and correlations can generate a variety of unusual quantum phases, many of which remain to be explored. Recent advances have identified monolayer WTe2 as a promising material for exploring such interplay in a highly tunable fashion. The ground state of this two-dimensional (2D) crystal can be electrostatically tuned from a quantum spin Hall insulator (QSHI) to a superconductor. However, much remains unknown about the nature of these ground states, including the gap-opening mechanism of the insulating state. Here we report systematic studies of the insulating phase in WTe2 monolayer and uncover evidence supporting that the QSHI is also an excitonic insulator (EI). An EI, arising from the spontaneous formation of electron-hole bound states (excitons), is a largely unexplored quantum phase to date, especially when it is topological. Our experiments on high-quality transport devices reveal the presence of an intrinsic insulating state at the charge neutrality point (CNP) in clean samples. The state exhibits both a strong sensitivity to the electric displacement field and a Hall anomaly that are consistent with the excitonic pairing. We further confirm the correlated nature of this charge-neutral insulator by tunneling spectroscopy. Our results support the existence of an EI phase in the clean limit and rule out alternative scenarios of a band insulator or a localized insulator. These observations lay the foundation for understanding a new class of correlated insulators with nontrivial topology and identify monolayer WTe2 as a promising candidate for exploring quantum phases of ground-state excitons.
The quantum spin Hall insulator (QSHI) state has been demonstrated in two semiconductor systems - HgTe/CdTe quantum wells (QWs) and InAs/GaSb QW bilayers. Unlike the HgTe/CdTe QWs, the inverted band gap in InAs/GaSb QW bilayers does not open at the $Gamma$ point of the Brillouin zone, preventing the realization of massless Dirac fermions. Here, we propose a new class of semiconductor systems based on InAs/Ga(In)Sb multilayers, hosting a QSHI state, a graphene-like phase and a bilayer graphene analogue, depending on their layer thicknesses and geometry. The QSHI gap in the novel structures can reach up to 60 meV for realistic design and parameters. This value is twice as high as the thermal energy at room temperature and significantly extends the application potential of III-V semiconductor-based topological devices.
The cross-plane thermal conductivity of a type II InAs/GaSb superlattice (T2SL) is measured from 13 K to 300 K using the 3{omega} method. Thermal conductivity is reduced by up to 2 orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1-8 W/mcdotK may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL quantum cascade lasers and high power light emitting diodes. We introduce a power-law approximation to model non-linearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively.
We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta$_2$NiSe$_5$ investigated by time- and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of $F_{C} = 0.2$ mJ cm$^{-2}$, the band gap $narrows$ transiently, while it is $enhanced$ above $F_{C}$. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta$_2$NiSe$_5$, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta$_2$NiSe$_5$ with light on the femtosecond time scale.
The complex electronic properties of $mathrm{ZrTe_5}$ have recently stimulated in-depth investigations that assigned this material to either a topological insulator or a 3D Dirac semimetal phase. Here we report a comprehensive experimental and theoretical study of both electronic and structural properties of $mathrm{ZrTe_5}$, revealing that the bulk material is a strong topological insulator (STI). By means of angle-resolved photoelectron spectroscopy, we identify at the top of the valence band both a surface and a bulk state. The dispersion of these bands is well captured by ab initio calculations for the STI case, for the specific interlayer distance measured in our x-ray diffraction study. Furthermore, these findings are supported by scanning tunneling spectroscopy revealing the metallic character of the sample surface, thus confirming the strong topological nature of $mathrm{ZrTe_5}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا