Do you want to publish a course? Click here

Speckle lifetime in XAO coronagraphic images: temporal evolution of SPHERE coronagraphic images

300   0   0.0 ( 0 )
 Added by Julien Milli .
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The major source of noise in high-contrast imaging is the presence of slowly evolving speckles that do not average with time. The temporal stability of the point-spread-function (PSF) is therefore critical to reach a high contrast with extreme adaptive optics (xAO) instruments. Understanding on which timescales the PSF evolves and what are the critical parameters driving the speckle variability allow to design an optimal observing strategy and data reduction technique to calibrate instrumental aberrations and reveal faint astrophysical sources. We have obtained a series of 52 min, AO-corrected, coronagraphically occulted, high-cadence (1.6Hz), H-band images of the star HR 3484 with the SPHERE (Spectro-Polarimeter High-contrast Exoplanet REsearch instrument on the VLT. This is a unique data set from an xAO instrument to study its stability on timescales as short as one second and as long as several tens of minutes. We find different temporal regimes of decorrelation. We show that residuals from the atmospheric turbulence induce a fast, partial decorrelation of the PSF over a few seconds, before a transition to a regime with a linear decorrelation with time, at a rate of several tens parts per million per second (ppm/s). We analyze the spatial dependence of this decorrelation, within the well-corrected radius of the adaptive optics system and show that the linear decorrelation is faster at short separations. Last, we investigate the influence of the distance to the meridian on the decorrelation.



rate research

Read More

Observing sequences have shown that the major noise source limitation in high-contrast imaging is due to the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve, is determined by various factors, among others mechanical or thermal deformations. Understanding of these time-variable instrumental speckles, and especially their interaction with other aberrations, referred to as the pinning effect, is paramount for the search of faint stellar companions. The temporal evolution of quasi-static speckles is for instance required for a quantification of the gain expected when using angular differential imaging (ADI), and to determine the interval on which speckle nulling techniques must be carried out. Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the High-Order Test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. The temporal evolution of the quasi-static wavefront error exhibits linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 angstrom per minute.
The major noise source limiting high-contrast imaging is due to the presence of quasi-static speckles. Speckle noise originates from wavefront errors caused by various independent sources, and it evolves on different timescales pending to their nature. An understanding of quasi-static speckles originating from instrumental errors is paramount for the search of faint stellar companions. Instrumental speckles average to a fixed pattern, which can be calibrated to a certain extent, but their temporal evolution ultimately limit this possibility. This study focuses on the laboratory evidence and characterization of the quasi-static pinned speckle phenomenon. Specifically, we examine the coherent amplification of the static speckle contribution to the noise variance in the scientific image, through its interaction with quasi-static speckles. The analysis of a time series of adaptively corrected, coronagraphic images recorded in the laboratory enables the characterization of the temporal stability of the residual speckle pattern in both direct and differential coronagraphic images. We estimate that spoiled and fast-evolving quasi-static speckles present in the system at the angstrom/nanometer level are affecting the stability of the static speckle noise in the final image after the coronagraph. The temporal evolution of the quasi-static wavefront error exhibits linear power law, which can be used in first order to model quasi-static speckle evolution in high-contrast imaging instruments.
The Hubble Space Telescope (HST) NICMOS instrument has been used from 1997 to 2008 to perform coronagraphic observations of about 400 targets. Most of them were part of surveys looking for substellar companions or resolved circumstellar disks to young nearby stars, making the NICMOS coronagraphic archive a valuable database for exoplanets and disks studies. As part of the Archival Legacy Investigations of Circumstellar Environments (ALICE) program, we have consistently re-processed a large fraction of the NICMOS coronagrahic archive using advanced PSF subtraction methods. We present here the high-level science products of these re-analyzed data, which we delivered back to the community through the Mikulski Archive for Space Telescopes (MAST) http://dx.doi.org/10.17909/T9W89V . We also present the second version of the HCI-FITS format (for High-Contrast Imaging FITS format), which we developed as a standard format for data exchange of imaging reduced science products. These re-analyzed products are openly available for population statistics studies, characterization of specific targets, or detected point source identification.
In this paper, we present the infrared coronagraphic test bench of the University of Li`ege named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the performances of the Annular Groove Phase Masks (AGPMs) at near- to mid-infrared wavelengths. The AGPM is a subwavelength grating vortex coronagraph of charge two (SGVC2) made out of diamond. The bench is designed to be completely achromatic and will be composed of a super continuum laser source emitting in the near to mid-infrared, several parabolas, diaphragms and an infrared camera. This way, we will be able to test the different AGPMs in the M, L, K and H bands. Eventually, the bench will also allow the computation of the incident wavefront aberrations on the coronagraph. A reflective Lyot stop will send most of the stellar light to a second camera to perform low-order wavefront sensing. This second system coupled with a deformable mirror will allow the correction of the wavefront aberrations. We also aim to test other pre- and/or post-coronagraphic concepts such as optimal apodization.
Residual speckles in adaptive optics (AO) images represent a well-known limitation on the achievement of the contrast needed for faint source detection. Speckles in AO imagery can be the result of either residual atmospheric aberrations, not corrected by the AO, or slowly evolving aberrations induced by the optical system. We take advantage of the high temporal cadence (1 ms) of the data acquired by the System for Coronagraphy with High-order Adaptive Optics from R to K bands-VIS forerunner experiment at the Large Binocular Telescope to characterize the AO residual speckles at visible wavelengths. An accurate knowledge of the speckle pattern and its dynamics is of paramount importance for the application of methods aimed at their mitigation. By means of both an automatic identification software and information theory, we study the main statistical properties of AO residuals and their dynamics. We therefore provide a speckle characterization that can be incorporated into numerical simulations to increase their realism and to optimize the performances of both real-time and postprocessing techniques aimed at the reduction of the speckle noise.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا