Do you want to publish a course? Click here

The VORTEX coronagraphic test bench

96   0   0.0 ( 0 )
 Added by Aissa Jolivet
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present the infrared coronagraphic test bench of the University of Li`ege named VODCA (Vortex Optical Demonstrator for Coronagraphic Applications). The goal of the bench is to assess the performances of the Annular Groove Phase Masks (AGPMs) at near- to mid-infrared wavelengths. The AGPM is a subwavelength grating vortex coronagraph of charge two (SGVC2) made out of diamond. The bench is designed to be completely achromatic and will be composed of a super continuum laser source emitting in the near to mid-infrared, several parabolas, diaphragms and an infrared camera. This way, we will be able to test the different AGPMs in the M, L, K and H bands. Eventually, the bench will also allow the computation of the incident wavefront aberrations on the coronagraph. A reflective Lyot stop will send most of the stellar light to a second camera to perform low-order wavefront sensing. This second system coupled with a deformable mirror will allow the correction of the wavefront aberrations. We also aim to test other pre- and/or post-coronagraphic concepts such as optimal apodization.



rate research

Read More

208 - D. Vassallo 2018
In this article, we present a simulator conceived for the conceptual study of an AO-fed high-contrast coronagraphic imager. The simulator implements physical optics: a complex disturbance (the electric field) is Fresnel-propagated through any user-defined optical train, in an end-to-end fashion. The effect of atmospheric residual aberrations and their evolution with time can be reproduced by introducing in input a temporal sequence of phase screens: synthetic images are then generated by co-adding instantaneous PSFs. This allows studying with high accuracy the impact of AO correction on image quality for different integration times and observing conditions. In addition, by conveniently detailing the optical model, the user can easily implement any coronagraphic set-up and introduce optical aberrations at any position. Furthermore, generating multiple images can allow exploring detection limits after a differential post-processing algorithm is applied (e.g. Angular Differential Imaging). The simulator has been developed in the framework of the design of SHARK-NIR, the second-generation high contrast imager selected for the Large Binocular Telescope.
The behavior of an adaptive optics (AO) system for ground-based high contrast imaging (HCI) dictates the achievable contrast of the instrument. In conditions where the coherence time of the atmosphere is short compared to the speed of the AO system, the servo-lag error becomes the dominate error term of the AO system. While the AO system measures the wavefront error and subsequently applies a correction (taking a total of 1 to 2 milli-seconds), the atmospheric turbulence above the telescope has changed. In addition to reducing the Strehl ratio, the servo-lag error causes a build-up of speckles along the direction of the dominant wind vector in the coronagraphic image, severely limiting the contrast at small angular separations. One strategy to mitigate this problem is to predict the evolution of the turbulence over the delay. Our predictive wavefront control algorithm minimizes the delay in a mean square sense and has been implemented on the Keck II AO bench. In this paper we report on the latest results of our algorithm and discuss updates to the algorithm itself. We explore how to tune various filter parameters on the basis of both daytime laboratory tests and on-sky tests. We show a reduction in residual-mean-square wavefront error for the predictor compare to the leaky integrator implemented on Keck. Finally, we present contrast improvements for both day time and on-sky tests. Using the L-band vortex coronagraph for Kecks NIRC2 instrument, we find a contrast gain of 2.03 at separation of 3~$lambda/D$ and up to 3 for larger separations (4-6~$lambda/D$).
The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is housed in a unit, called {it PMT-Block}. The PMT-Block is a compact instrument comprising a light mixer, a PMT together with its divider and a {it 3-in-1} card, which provides shaping, amplification and integration for the signals. This instrument needs to be qualified before being assembled on the detector. A PMT-Block test bench has been developed for this purpose. This test bench is a system which allows fast, albeit accurate enough, measurements of the main properties of a complete PMT-Block. The system, both hardware and software, and the protocol used for the PMT-Blocks characterisation are described in detail in this report. The results obtained in the test of about 10000 PMT-Blocks needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile Calorimeter are also reported.
The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic<13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets that are smaller in size than Neptune. TESS will employ four wide-field optical charge-coupled device (CCD) cameras with a band-pass of 650 nm-1050 nm to detect temporary drops in brightness of stars due to planetary transits. The 1050 nm limit is set by the quantum efficiency (QE) of the CCDs. The detector assembly consists of four back-illuminated MIT Lincoln Laboratory CCID-80 devices. Each CCID-80 device consists of 2048x2048 imaging array and 2048x2048 frame store regions. Very precise on-ground calibration and characterization of CCD detectors will significantly assist in the analysis of the science data obtained in space. The characterization of the absolute QE of the CCD detectors is a crucial part of the characterization process because QE affects the performance of the CCD significantly over the redder wavelengths at which TESS will be operating. An optical test bench with significantly high photometric stability has been developed to perform precise QE measurements. The design of the test setup along with key hardware, methodology, and results from the test campaign are presented.
Nulling interferometry is still a promising method to characterize spectra of exoplanets. One of the main issues is to cophase at a nanometric level each arm despite satellite disturbances. The bench PERSEE aims to prove the feasibility of that technique for spaceborne missions. After a short description of PERSEE, we will first present the results obtained in a simplified configuration: we have cophased down to 0.22 nm rms in optical path difference (OPD) and 60 mas rms in tip/tilt, and have obtained a monochromatic null of 3E-5 stabilized at 3E-6. The goal of 1 nm with additional typical satellite disturbances requires the use of an optimal control law; that is why we elaborated a dedicated Kalman filter. Simulations and experiments show a good rejection of disturbances. Performance of the bench should be enhanced by using a Kalman control law, and we should be able to reach the desired nanometric stability. Following, we will present the first results of the final polychromatic configuration, which includes an achromatic phase shifter, perturbators and optical delay lines. As a conclusion, we give the first more general lessons we have already learned from this experiment, both at system and component levels for a future space mission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا