Do you want to publish a course? Click here

Speckle temporal stability in XAO coronagraphic images II. Refine model for quasi-static speckle temporal evolution for VLT/SPHERE

295   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observing sequences have shown that the major noise source limitation in high-contrast imaging is due to the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve, is determined by various factors, among others mechanical or thermal deformations. Understanding of these time-variable instrumental speckles, and especially their interaction with other aberrations, referred to as the pinning effect, is paramount for the search of faint stellar companions. The temporal evolution of quasi-static speckles is for instance required for a quantification of the gain expected when using angular differential imaging (ADI), and to determine the interval on which speckle nulling techniques must be carried out. Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the High-Order Test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. The temporal evolution of the quasi-static wavefront error exhibits linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 angstrom per minute.



rate research

Read More

299 - J. Milli , T. Banas , D. Mouill 2016
The major source of noise in high-contrast imaging is the presence of slowly evolving speckles that do not average with time. The temporal stability of the point-spread-function (PSF) is therefore critical to reach a high contrast with extreme adaptive optics (xAO) instruments. Understanding on which timescales the PSF evolves and what are the critical parameters driving the speckle variability allow to design an optimal observing strategy and data reduction technique to calibrate instrumental aberrations and reveal faint astrophysical sources. We have obtained a series of 52 min, AO-corrected, coronagraphically occulted, high-cadence (1.6Hz), H-band images of the star HR 3484 with the SPHERE (Spectro-Polarimeter High-contrast Exoplanet REsearch instrument on the VLT. This is a unique data set from an xAO instrument to study its stability on timescales as short as one second and as long as several tens of minutes. We find different temporal regimes of decorrelation. We show that residuals from the atmospheric turbulence induce a fast, partial decorrelation of the PSF over a few seconds, before a transition to a regime with a linear decorrelation with time, at a rate of several tens parts per million per second (ppm/s). We analyze the spatial dependence of this decorrelation, within the well-corrected radius of the adaptive optics system and show that the linear decorrelation is faster at short separations. Last, we investigate the influence of the distance to the meridian on the decorrelation.
The major noise source limiting high-contrast imaging is due to the presence of quasi-static speckles. Speckle noise originates from wavefront errors caused by various independent sources, and it evolves on different timescales pending to their nature. An understanding of quasi-static speckles originating from instrumental errors is paramount for the search of faint stellar companions. Instrumental speckles average to a fixed pattern, which can be calibrated to a certain extent, but their temporal evolution ultimately limit this possibility. This study focuses on the laboratory evidence and characterization of the quasi-static pinned speckle phenomenon. Specifically, we examine the coherent amplification of the static speckle contribution to the noise variance in the scientific image, through its interaction with quasi-static speckles. The analysis of a time series of adaptively corrected, coronagraphic images recorded in the laboratory enables the characterization of the temporal stability of the residual speckle pattern in both direct and differential coronagraphic images. We estimate that spoiled and fast-evolving quasi-static speckles present in the system at the angstrom/nanometer level are affecting the stability of the static speckle noise in the final image after the coronagraph. The temporal evolution of the quasi-static wavefront error exhibits linear power law, which can be used in first order to model quasi-static speckle evolution in high-contrast imaging instruments.
214 - Rob Fergus 2014
High dynamic-range imagers aim to block out or null light from a very bright primary star to make it possible to detect and measure far fainter companions; in real systems a small fraction of the primary light is scattered, diffracted, and unocculted. We introduce S4, a flexible data-driven model for the unocculted (and highly speckled) light in the P1640 spectroscopic coronograph. The model uses Principal Components Analysis (PCA) to capture the spatial structure and wavelength dependence of the speckles but not the signal produced by any companion. Consequently, the residual typically includes the companion signal. The companion can thus be found by filtering this error signal with a fixed companion model. The approach is sensitive to companions that are of order a percent of the brightness of the speckles, or up to $10^{-7}$ times the brightness of the primary star. This outperforms existing methods by a factor of 2-3 and is close to the shot-noise physical limit.
Residual speckles in adaptive optics (AO) images represent a well-known limitation on the achievement of the contrast needed for faint source detection. Speckles in AO imagery can be the result of either residual atmospheric aberrations, not corrected by the AO, or slowly evolving aberrations induced by the optical system. We take advantage of the high temporal cadence (1 ms) of the data acquired by the System for Coronagraphy with High-order Adaptive Optics from R to K bands-VIS forerunner experiment at the Large Binocular Telescope to characterize the AO residual speckles at visible wavelengths. An accurate knowledge of the speckle pattern and its dynamics is of paramount importance for the application of methods aimed at their mitigation. By means of both an automatic identification software and information theory, we study the main statistical properties of AO residuals and their dynamics. We therefore provide a speckle characterization that can be incorporated into numerical simulations to increase their realism and to optimize the performances of both real-time and postprocessing techniques aimed at the reduction of the speckle noise.
To detect Earth-like planets in the visible with a coronagraphic telescope, two major noise sources have to be overcome: the photon noise of the diffracted star light, and the speckle noise due to the star light scattered by instrumental defects. Coronagraphs tackle only the photon noise contribution. In order to decrease the speckle noise below the planet level, an active control of the wave front is required. We have developed analytical methods to measure and correct the speckle noise behind a coronagraph with a deformable mirror. In this paper, we summarize these methods, present numerical simulations, and discuss preliminary experimental results obtained with the High-Contrast Imaging Testbed at NASAs Jet Propulsion Laboratory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا