Do you want to publish a course? Click here

Growth and engineering of perovskite SrIrO3 thin films

98   0   0.0 ( 0 )
 Added by Abhijit Biswas
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

5d transition-metal-based oxides display emergent phenomena due to the competition between the relevant energy scales of the correlation, bandwidth, and most importantly, the strong spin-orbit coupling (SOC). Starting from the prediction of novel oxide topological insulators in bilayer ABO3 (B = 5d elements) thin-film grown along the (111) direction, 5d-based perovskites (Pv) form a new paradigm in the thin-film community. Here, we reviewed the scientific accomplishments in Pv-SrIrO3 thin films, a popular candidate for observing non-trivial topological phenomena. Although the predicted topological phenomena are unknown, the Pv-SrIrO3 thin film shows many emergent properties due to the delicate interplay between its various degrees of freedom. These observations provide new physical insight and encourage further research on the design of new 5d-based heterostructures or superlattices for the observation of the hidden topological quantum phenomena in strong spin-orbit coupled oxides.



rate research

Read More

The crystallographic orientation of SrIrO3 surfaces is decisive for the occurrence of topological surface states. We show from DFT computations that (001) and (110) free surfaces have comparable energies, and, correspondingly, we experimentally observe that single micro-crystals exhibit both facet orientations. These surfaces are found to relax over typically the length of one oxygen octahedron, defining a structural critical thickness for thin films. A reconstruction of the electronic density associated to tilts of the oxygen octahedra is observed. On the other hand, thin films have invariably been reported to grow along the (110) direction. We show that the interfacial energy associated to the oxygen octahedra distortion for epitaxy is likely at the origin of this specific feature, and propose leads to induce (001) SrIrO3 growth.
We report on the synthesis of perovskite SrIrO3 thin films using sputtering technique. Single phase (110) oriented SrIrO$_3$ thin films were epitaxially grown on SrTiO3 (001) substrate. Using off-axis XRD $theta-2theta$ scans, we demonstrate that these films exhibit (110) out-of-plane orientation with (001) and (1-10) lying in-plane. The sputtering grown thin films have a smooth, homogeneous surface, and excellent coherent interface with the substrate.
Magneto-transport properties of SrIrO$_3$ thin films epitaxially grown on SrTiO$_3$, using reactive RF sputtering, are investigated. A large anisotropy between the in-plane and the out-of-plane resistivities is found, as well as a signature of the substrate cubic to tetragonal transition. Both observations result from the structural distortion associated to the epitaxial strain. The low-temperature and field dependences of the Hall number are interpreted as due to the contribution of Coulomb interactions to weak localization, evidencing the strong correlations in this material. The introduction of a contribution from magnetic scatters, in the analysis of magnetoconductance in the weakly localized regime, is proposed as an alternative to an anomalously large temperature dependence of the Land{e} coefficient.
Electronic transport has been investigated for strong spin-orbit coupled perovskite SrIrO3 thin films grown at various substrate temperatures. The electronic transport of the SrIrO3 films is found to be very sensitive to the growth parameters; in particular, the film can either be a metal or an insulator depending upon the substrate growth temperature. While all the metallic films show unusual sublinear temperature dependent non-Fermi liquid behaviors in resistivity, the insulating film grown at a higher temperature stands out for its inhomogeneous Ir distribution, as analyzed by secondary ion mass spectrometry. This observation demonstrates that the inhomogeneous distribution of cations can be one of the fundamental factors in affecting the electronic transport in heavy element based oxide films and heterostructures.
The control of matter properties (transport, magnetic, dielectric,...) using synthesis as thin films is strongly hindered by the lack of reliable theories, able to guide the design of new systems, through the understanding of the interface effects and of the way the substrate constraints are imposed to the material. The present paper analyses the energetic contributions at the interfaces, and proposes a model describing the microscopic mechanisms governing the interactions at an epitaxial interface between a manganite and another transition metal oxide in perovskite structure (as for instance $rm SrTiO_3$). The model is checked against experimental results and literature analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا