Do you want to publish a course? Click here

Growth facets of SrIrO3 Thin Films and Single Crystals

89   0   0.0 ( 0 )
 Added by Luc Fruchter
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The crystallographic orientation of SrIrO3 surfaces is decisive for the occurrence of topological surface states. We show from DFT computations that (001) and (110) free surfaces have comparable energies, and, correspondingly, we experimentally observe that single micro-crystals exhibit both facet orientations. These surfaces are found to relax over typically the length of one oxygen octahedron, defining a structural critical thickness for thin films. A reconstruction of the electronic density associated to tilts of the oxygen octahedra is observed. On the other hand, thin films have invariably been reported to grow along the (110) direction. We show that the interfacial energy associated to the oxygen octahedra distortion for epitaxy is likely at the origin of this specific feature, and propose leads to induce (001) SrIrO3 growth.



rate research

Read More

5d transition-metal-based oxides display emergent phenomena due to the competition between the relevant energy scales of the correlation, bandwidth, and most importantly, the strong spin-orbit coupling (SOC). Starting from the prediction of novel oxide topological insulators in bilayer ABO3 (B = 5d elements) thin-film grown along the (111) direction, 5d-based perovskites (Pv) form a new paradigm in the thin-film community. Here, we reviewed the scientific accomplishments in Pv-SrIrO3 thin films, a popular candidate for observing non-trivial topological phenomena. Although the predicted topological phenomena are unknown, the Pv-SrIrO3 thin film shows many emergent properties due to the delicate interplay between its various degrees of freedom. These observations provide new physical insight and encourage further research on the design of new 5d-based heterostructures or superlattices for the observation of the hidden topological quantum phenomena in strong spin-orbit coupled oxides.
We report on the synthesis of perovskite SrIrO3 thin films using sputtering technique. Single phase (110) oriented SrIrO$_3$ thin films were epitaxially grown on SrTiO3 (001) substrate. Using off-axis XRD $theta-2theta$ scans, we demonstrate that these films exhibit (110) out-of-plane orientation with (001) and (1-10) lying in-plane. The sputtering grown thin films have a smooth, homogeneous surface, and excellent coherent interface with the substrate.
Piezoelectric quartz SiO2 crystals are widely used in industry as oscillators. As a natural mineral, quartz and its relevant silicates are also of interest of geoscience and mineralogy. However, the nucleation and growth of quartz crystals is difficult to control and not fully understood. Here we report successful solid state crystallization of thin film of amorphous GeO2 into quartz on various substrates including Al2O3, MgAl2O4, MgO, LaAlO3 and SrTiO3. At relatively low annealing temperatures, the crystallization process is spherulitic: with fibers growing radially from the nucleation centers and the crystal lattice rotating along the growth direction with a linear dependence between the rotation angle and the distance to the core. For increasingly higher annealing temperatures, quartz crystals begin to form. The edges of the sample play an important role facilitating nucleation followed by growth sweeping inward until the whole film is crystallized. Control of the growth allows single crystalline quartz to be synthesized. Our study reveals the complexity of the nucleation and growth process of quartz and provides insight for further studies.
We have grown epitaxial thin films of multiferroic BiMnO$_3$ using pulsed laser deposition. The films were grown on SrTiO$_3$ (001) substrates by ablating a Bi-rich target. Using x-ray diffraction we confirmed that the films were epitaxial and the stoichiometry of the films was confirmed using Auger electron spectroscopy. The films have a ferromagnetic Curie temperature ($T_C$) of 85$pm$5 K and a saturation magnetization of 1 $mu_B$/Mn. The electric polarization as a function of electric field ($P-E$) was measured using an interdigital capacitance geometry. The $P-E$ plot shows a clear hysteresis that confirms the multiferroic nature of the thin films.
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented SrTiO3 substrates. Phase-pure films with optimum crystallographic and magnetic properties were obtained by growing at a substrate temperature of 700 degree C in pure O2 of 6.6x10-4 mbar. The films are c-axis oriented, coherently strained, and show less than 20% anti-site defects. The magnetization curves reveal high saturation magnetization of 0.8 muB per formula unit and high coercivity of 1.1 T, as well as a strong magnetic anisotropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا