Do you want to publish a course? Click here

Inverse scattering for a random potential

90   0   0.0 ( 0 )
 Added by Pedro Caro
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we consider an inverse problem for the $n$-dimensional random Schr{o}dinger equation $(Delta-q+k^2)u = 0$. We study the scattering of plane waves in the presence of a potential $q$ which is assumed to be a Gaussian random function such that its covariance is described by a pseudodifferential operator. Our main result is as follows: given the backscattered far field, obtained from a single realization of the random potential $q$, we uniquely determine the principal symbol of the covariance operator of $q$. Especially, for $n=3$ this result is obtained for the full non-linear inverse backscattering problem. Finally, we present a physical scaling regime where the method is of practical importance.



rate research

Read More

109 - Gang Bao , Chuchu Chen , 2016
This paper is concerned with the direct and inverse random source scattering problems for elastic waves where the source is assumed to be driven by an additive white noise. Given the source, the direct problem is to determine the displacement of the random wave field. The inverse problem is to reconstruct the mean and variance of the random source from the boundary measurement of the wave field at multiple frequencies. The direct problem is shown to have a unique mild solution by using a constructive proof. Based on the explicit mild solution, Fredholm integral equations of the first kind are deduced for the inverse problem. The regularized Kaczmarz method is presented to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.
92 - Xiaofen Gao , Chengbin Xu 2019
In this paper, we study the long time behavior of the solution of nonlinear Schrodinger equation with a singular potential. We prove scattering below the ground state for the radial NLS with inverse-square potential in dimension two $$iu_t+Delta u-frac{a u}{|x|^2}= -|u|^pu$$ when $2<p<infty$ and $a>0$. This work extends the result in [13, 14, 16] to dimension 2D. The key point is a modified version of Arora-Dodson-Murphys approach [2].
72 - Ying Wang 2021
In this paper, we study the scattering theory for the cubic inhomogeneous Schrodinger equations with inverse square potential $iu_t+Delta u-frac{a}{|x|^2}u=lambda |x|^{-b}|u|^2u$ with $a>-frac14$ and $0<b<1$ in dimension three. In the defocusing case (i.e. $lambda=1$), we establish the global well-posedness and scattering for any initial data in the energy space $H^1_a(mathbb R^3)$. While for the focusing case(i.e. $lambda=-1$), we obtain the scattering for the initial data below the threshold of the ground state, by making use of the virial/Morawetz argument as in Dodson-Murphy [Proc. Amer. Math. Soc.,145(2017), 4859-4867.] and Campos-Cardoso [arXiv: 2101.08770v1.] that avoids the use of interaction Morawetz estimate.
119 - Hironobu Sasaki 2011
We consider inverse scattering problems for the three-dimensional Hartree equation. We prove that if the unknown interaction potential $V(x)$ of the equation satisfies some rapid decay condition, then we can uniquely determine the exact value of $partial_xi^alpha hat{V}(0)$ for any multi-index $alpha$ by the knowledge of the scattering operator for the equation. Furthermore, we show some stability estimate for identifying $partial_xi^alpha hat{V}(0)$.
179 - Hironobu Sasaki 2008
We study the inverse scattering problem for the three dimensional nonlinear Schroedinger equation with the Yukawa potential. The nonlinearity of the equation is nonlocal. We reconstruct the potential and the nonlinearity by the knowledge of the scattering states. Our result is applicable to reconstructing the nonlinearity of the semi-relativistic Hartree equation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا