Do you want to publish a course? Click here

Inverse scattering problems for the Hartree equation whose interaction potential decays rapidly

120   0   0.0 ( 0 )
 Added by Hironobu Sasaki
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We consider inverse scattering problems for the three-dimensional Hartree equation. We prove that if the unknown interaction potential $V(x)$ of the equation satisfies some rapid decay condition, then we can uniquely determine the exact value of $partial_xi^alpha hat{V}(0)$ for any multi-index $alpha$ by the knowledge of the scattering operator for the equation. Furthermore, we show some stability estimate for identifying $partial_xi^alpha hat{V}(0)$.



rate research

Read More

180 - Hironobu Sasaki 2008
We study the inverse scattering problem for the three dimensional nonlinear Schroedinger equation with the Yukawa potential. The nonlinearity of the equation is nonlocal. We reconstruct the potential and the nonlinearity by the knowledge of the scattering states. Our result is applicable to reconstructing the nonlinearity of the semi-relativistic Hartree equation.
In this paper we present a hybrid approach to numerically solve two-dimensional electromagnetic inverse scattering problems, whereby the unknown scatterer is hosted by a possibly inhomogeneous background. The approach is `hybrid in that it merges a qualitative and a quantitative method to optimize the way of exploiting the a priori information on the background within the inversion procedure, thus improving the quality of the reconstruction and reducing the data amount necessary for a satisfactory result. In the qualitative step, this a priori knowledge is utilized to implement the linear sampling method in its near-field formulation for an inhomogeneous background, in order to identify the region where the scatterer is located. On the other hand, the same a priori information is also encoded in the quantitative step by extending and applying the contrast source inversion method to what we call the `inhomogeneous Lippmann-Schwinger equation: the latter is a generalization of the classical Lippmann-Schwinger equation to the case of an inhomogeneous background, and in our paper is deduced from the differential formulation of the direct scattering problem to provide the reconstruction algorithm with an appropriate theoretical basis. Then, the point values of the refractive index are computed only in the region identified by the linear sampling method at the previous step. The effectiveness of this hybrid approach is supported by numerical simulations presented at the end of the paper.
In this paper we consider an inverse problem for the $n$-dimensional random Schr{o}dinger equation $(Delta-q+k^2)u = 0$. We study the scattering of plane waves in the presence of a potential $q$ which is assumed to be a Gaussian random function such that its covariance is described by a pseudodifferential operator. Our main result is as follows: given the backscattered far field, obtained from a single realization of the random potential $q$, we uniquely determine the principal symbol of the covariance operator of $q$. Especially, for $n=3$ this result is obtained for the full non-linear inverse backscattering problem. Finally, we present a physical scaling regime where the method is of practical importance.
250 - Remi Carles 2007
We justify WKB analysis for Hartree equation in space dimension at least three, in a regime which is supercritical as far as semiclassical analysis is concerned. The main technical remark is that the nonlinear Hartree term can be considered as a semilinear perturbation. This is in contrast with the case of the nonlinear Schrodinger equation with a local nonlinearity, where quasilinear analysis is needed to treat the nonlinearity.
The lattice potential Korteweg-de Vries equation (LKdV) is a partial difference equation in two independent variables, which possesses many properties that are analogous to those of the celebrated Korteweg-de Vries equation. These include discrete soliton solutions, Backlund transformations and an associated linear problem, called a Lax pair, for which it provides the compatibility condition. In this paper, we solve the initial value problem for the LKdV equation through a discrete implementation of the inverse scattering transform method applied to the Lax pair. The initial value used for the LKdV equation is assumed to be real and decaying to zero as the absolute value of the discrete spatial variable approaches large values. An interesting feature of our approach is the solution of a discrete Gelfand-Levitan equation. Moreover, we provide a complete characterization of reflectionless potentials and show that this leads to the Cauchy matrix form of N-soliton solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا