Do you want to publish a course? Click here

Scattering theory for 3d cubic inhomogeneous NLS with inverse square potential

73   0   0.0 ( 0 )
 Added by Ying Wang
 Publication date 2021
  fields
and research's language is English
 Authors Ying Wang




Ask ChatGPT about the research

In this paper, we study the scattering theory for the cubic inhomogeneous Schrodinger equations with inverse square potential $iu_t+Delta u-frac{a}{|x|^2}u=lambda |x|^{-b}|u|^2u$ with $a>-frac14$ and $0<b<1$ in dimension three. In the defocusing case (i.e. $lambda=1$), we establish the global well-posedness and scattering for any initial data in the energy space $H^1_a(mathbb R^3)$. While for the focusing case(i.e. $lambda=-1$), we obtain the scattering for the initial data below the threshold of the ground state, by making use of the virial/Morawetz argument as in Dodson-Murphy [Proc. Amer. Math. Soc.,145(2017), 4859-4867.] and Campos-Cardoso [arXiv: 2101.08770v1.] that avoids the use of interaction Morawetz estimate.



rate research

Read More

92 - Xiaofen Gao , Chengbin Xu 2019
In this paper, we study the long time behavior of the solution of nonlinear Schrodinger equation with a singular potential. We prove scattering below the ground state for the radial NLS with inverse-square potential in dimension two $$iu_t+Delta u-frac{a u}{|x|^2}= -|u|^pu$$ when $2<p<infty$ and $a>0$. This work extends the result in [13, 14, 16] to dimension 2D. The key point is a modified version of Arora-Dodson-Murphys approach [2].
We consider the focusing energy critical NLS with inverse square potential in dimension $d= 3, 4, 5$ with the details given in $d=3$ and remarks on results in other dimensions. Solutions on the energy surface of the ground state are characterized. We prove that solutions with kinetic energy less than that of the ground state must scatter to zero or belong to the stable/unstable manifolds of the ground state. In the latter case they converge to the ground state exponentially in the energy space as $tto infty$ or $tto -infty$. (In 3-dim without radial assumption, this holds under the compactness assumption of non-scattering solutions on the energy surface.) When the kinetic energy is greater than that of the ground state, we show that all radial $H^1$ solutions blow up in finite time, with the only two exceptions in the case of 5-dim which belong to the stable/unstable manifold of the ground state. The proof relies on the detailed spectral analysis, local invariant manifold theory, and a global Virial analysis.
We extend the result of Farah and Guzman on scattering for the $3d$ cubic inhomogeneous NLS to the non-radial setting. The key new ingredient is a construction of scattering solutions corresponding to initial data living far from the origin.
In this article, we consider the focusing cubic nonlinear Schrodinger equation(NLS) in the exterior domain outside of a convex obstacle in $mathbb{R}^3$ with Dirichlet boundary conditions. We revisit the scattering result below ground state of Killip-Visan-Zhang by utilizing Dodson and Murphys argument and the dispersive estimate established by Ivanovici and Lebeau, which avoids using the concentration compactness. We conquer the difficulty of the boundary in the focusing case by establishing a local smoothing effect of the boundary. Based on this effect and the interaction Morawetz estimates, we prove the solution decays at a large time interval, which meets the scattering criterions.
In this paper, we give a simple proof of scattering result for the Schrodinger equation with combined term $ipa_tu+Delta u=|u|^2u-|u|^4u$ in dimension three, that avoids the concentrate compactness method. The main new ingredient is to extend the scattering criterion to energy-critical.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا