No Arabic abstract
We present a theoretical study of the anisotropy of the spin relaxation and decoherence in typical quantum wells with an arbitrary magnetic field. In such systems, the orientation of the magnetic field relative to the main crystallographic directions is crucial, owing to the lack of spin-rotation symmetry. For typical high mobility samples, relaxation anisotropies in the motional narrowing limit owing to the interplay of Rashba and Dresselhaus spin orbit coupling are calculated. We also include the effect of the cubic-in-momentum terms. Although commonly ignored in literature, the latter were experimentally evidenced by the observation of strong anisotropy in spin decoherence measurements by different experimental groups and has long remained unexplained.
We study the depolarization of optically oriented electrons in quantum wells subjected to an in-plane magnetic field and show that the Hanle curve drastically depends on the carrier mobility. In low-mobility structures, the Hanle curve is described by a Lorentzian with the width determined by the effective g-factor and the spin lifetime. In contrast, the magnetic field dependence of spin polarization in high-mobility quantum wells is nonmonotonic: The spin polarization rises with the magnetic field induction at small fields, reaches maximum and then decreases. We show that the position of the Hanle curve maximum can be used to directly measure the spin-orbit Rashba/Dresselhaus magnetic field.
Employing state-of-the-art molecular beam epitaxy techniques to grow thin, modulation-doped AlAs quantum wells, we have achieved a low temperature mobility of 5.5 m$^2$/Vs with out-of-plane occupation, an order of magnitude improvement over previous studies. However, due to the narrow well width, mobilities are still limited by scattering due to interface roughness disorder. We demonstrate the successful implementation of a novel technique utilizing thermally-induced, biaxial, tensile strain that forces electrons to occupy the out-of-plane valley in thicker quantum wells, reducing interface roughness scattering and allowing us to achieve mobilities as high as 8.8 m$^2$/Vs.
We studied a doping series of (110)-oriented AlAs quantum wells (QWs) and observed transport evidence of single anisotropic-mass valley occupancy for the electrons in a 150 AA wide QW. Our calculations of strain and quantum confinement for these samples predict single anisotropic-mass valley occupancy for well widths $W$ greater than 53 AA. Below this, double-valley occupation is predicted such that the longitudinal mass axes are collinear. We observed mobility anisotropy in the electronic transport along the crystallographic directions in the ratio of 2.8, attributed to the mass anisotropy as well as anisotropic scattering of the electrons in the X-valley of AlAs.
We measure simultaneously the in-plane electron g-factor and spin relaxation rate in a series of undoped inversion-asymmetric (001)-oriented GaAs/AlGaAs quantum wells by spin-quantum beat spectroscopy. In combination the two quantities reveal the absolute values of both the Rashba and the Dresselhaus coefficients and prove that the Rashba coefficient can be negligibly small despite huge conduction band potential gradients which break the inversion symmetry. The negligible Rashba coefficient is a consequence of the isomorphism of conduction and valence band potentials in quantum systems where the asymmetry is solely produced by alloy variations.
Coherent electron spin dynamics in 10-nm-wide InGaAs/InAlAs quantum wells is studied from 10 K to room temperature using time-resolved Kerr rotation. The spin lifetime exceeds 1 ns at 10 K and decreases with temperature. By varying the spatial overlap between pump and probe pulses, a diffusive velocity is imprinted on the measured electron spins and a spin precession in the spin-orbit field is measured. A Rashba symmetry of the SOI is determined. By comparing the spatial precession frequency gradient with the spin decay rate, an upper limit for the Rashba coefficients $alpha$ of 2$times$10$^{-12}$ eVm is estimated.