We study the frequency dependencies in the renormalization of the fermion Greens function for the $pi$-band electrons in graphene and their influence on the dynamical gap generation at sufficiently strong interaction. Adopting the effective QED-like description for the low-energy excitations within the Dirac-cone region we self consistently solve the fermion Dyson-Schwinger equation in various approximations for the photon propagator and the vertex function with special emphasis on frequency dependent Lindhard screening and retardation effects.
We study the frequency dependencies of the fermion and photon dressing functions in dynamical gap generation in graphene. We use a low energy effective QED-like description, but within this approximation, we include all frequency dependent effects including retardation. We obtain the critical coupling by calculating the gap using a non-perturbative Dyson-Schwinger approach. Compared to the results of our previous calculation [1] which used a Lindhard screening approximation instead of including a self-consistently calculated dynamical screening function, the critical coupling is substantially reduced.
In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacking orders. At the Dirac point, ABA-stacked TLG remains metallic while the ABC counterpart becomes insulating. The latter exhibits a gap-like dI/dV characteristics at low temperature and thermally activated conduction at higher temperatures, indicating an intrinsic gap ~6 meV. In magnetic fields, in addition to an insulating state at filling factor { u}=0, ABC TLG exhibits quantum Hall plateaus at { u}=-30, pm 18, pm 9, each of which splits into 3 branches at higher fields. Such splittings are signatures of the Lifshitz transition induced by trigonal warping, found only in ABC TLG, and in semi-quantitative agreement with theory. Our results underscore the rich interaction-induced phenomena in trilayer graphene with different stacking orders, and its potential towards electronic applications.
The low-energy (intraband) range of the third harmonic generation of graphene in the terahertz regime is governed by the damping terms induced by the interactions. A controlled many-body description of the scattering processes is thus a compelling and desirable requirement. In this paper, using a Kadanoff-Baym approach, we systematically investigate the impact of many-body interaction on the third-harmonic generation (THG) of graphene, taking elastic impurity scattering as a benchmark example. We predict the onset in the mixed inter-intraband regime of novel incoherent features driven by the interaction at four- and five-photon transition frequencies in the third-harmonic optical conductivity with a spectral weight proportional to the scattering rate.We show also that, in spite of the complex many-body physics, the purely intraband term governing the limit $omega to 0$ resembles the constraints of the phenomenological model. We ascribe this agreement to the fulfilling of the conservation laws enforced by the conserving approach. The overlap with novel incoherent features and the impact of many-body driven multi-photon vertex couplings limit however severely the validity of phenomenological description.
The nonlinear optical and optoelectronic properties of graphene with the emphasis on the processes of harmonic generation, frequency mixing, photon drag and photogalvanic effects as well as generation of photocurrents due to coherent interference effects, are reviewed. The article presents the state-of-the-art of this subject, including both recent advances and well-established results. Various physical mechanisms controlling transport are described in depth including phenomenological description based on symmetry arguments, models visualizing physics of nonlinear responses, and microscopic theory of individual effects.
Realizations of some topological phases in two-dimensional systems rely on the challenge of jointly incorporating spin-orbit and magnetic exchange interactions. Here, we predict the formation and control of a fully valley-polarized quantum anomalous Hall effect in bilayer graphene, by separately imprinting spin-orbit and magnetic proximity effects in different layers. This results in varying spin splittings for the conduction and valence bands, which gives rise to a topological gap at a single Dirac cone. The topological phase can be controlled by a gate voltage and switched between valleys by reversing the sign of the exchange interaction. By performing quantum transport calculations in disordered systems, the chirality and resilience of the valley-polarized edge state are demonstrated. Our findings provide a promising route to engineer a topological phase that could enable low-power electronic devices and valleytronic applications.
M.E. Carrington
,C.S. Fischer
,L. von Smekal
.
(2016)
.
"Dynamical gap generation in graphene with frequency dependent renormalization effects"
.
M. E. Carrington
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا