No Arabic abstract
In this paper, we present an electrode geometry for the manipulation of ultracold rovibrational ground state NaK molecules. The electrode system allows to induce a dipole moment in trapped diatomic NaK molecules with a magnitude up to $68 %$ of their internal dipole moment along any direction in a given two-dimensional plane. The strength, the sign and the direction of the induced dipole moment is therefore fully tunable. Furthermore, the possibility to create strong electric field gradients provides the opportunity to address molecules in single layers of an optical lattice. The maximal relative variation of the electric field over the trapping volume is below $10^{-6}$. At the desired electric field value of 10 kV/cm this corresponds to a deviation of 0.01 V/cm. The electrode structure is made of transparent indium tin oxide and combines large optical access for sophisticated optical dipole traps and optical lattice configurations with the possibility to create versatile electric field configurations.
We explore coherent multi-photon processes in $^{87}$Rb$^{133}$Cs molecules using 3-level lambda and ladder configurations of rotational and hyperfine states, and discuss their relevance to future applications in quantum computation and quantum simulation. In the lambda configuration, we demonstrate the driving of population between two hyperfine levels of the rotational ground state via a two-photon Raman transition. Such pairs of states may be used in the future as a quantum memory, and we measure a Ramsey coherence time for a superposition of these states of 58(9) ms. In the ladder configuration, we show that we can generate and coherently populate microwave dressed states via the observation of an Autler-Townes doublet. We demonstrate that we can control the strength of this dressing by varying the intensity of the microwave coupling field. Finally, we perform spectroscopy of the rotational states of $^{87}$Rb$^{133}$Cs up to $N=6$, highlighting the potential of ultracold molecules for quantum simulation in synthetic dimensions. By fitting the measured transition frequencies we determine a new value of the centrifugal distortion coefficient $D_v=htimes207.3(2)~$Hz.
We create fermionic dipolar $^{23}$Na$^6$Li molecules in their triplet ground state from an ultracold mixture of $^{23}$Na and $^6$Li. Using magneto-association across a narrow Feshbach resonance followed by a two-photon STIRAP transfer to the triplet ground state, we produce $3,{times},10^4$ ground state molecules in a spin-polarized state. We observe a lifetime of $4.6,text{s}$ in an isolated molecular sample, approaching the $p$-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.
Understanding and controlling collisions is crucial to the burgeoning field of ultracold molecules. All experiments so far have observed fast loss of molecules from the trap. However, the dominant mechanism for collisional loss is not well understood when there are no allowed 2-body loss processes. Here we experimentally investigate collisional losses of nonreactive ultracold RbCs molecules, and compare our findings with the sticky collision hypothesis that pairs of molecules form long-lived collision complexes. We demonstrate that loss of molecules occupying their rotational and hyperfine ground state is best described by second-order rate equations, consistent with the expectation for complex-mediated collisions, but that the rate is lower than the limit of universal loss. The loss is insensitive to magnetic field but increases for excited rotational states. We demonstrate that dipolar effects lead to significantly faster loss for an incoherent mixture of rotational states.
This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole-dipole interactions. Ultracold samples of dipolar molecules with long-range interactions offer a unique platform for quantum simulations and the study of correlated many-body physics. We provide an introduction to the physics of dipolar quantum gases, both electric and magnetic, and summarize the multipronged efforts to bring dipolar molecules into the quantum regime. We discuss in detail the recent experimental progress in realizing and studying strongly interacting systems of polar molecules trapped in optical lattices, with particular emphasis on the study of interacting spin systems and non-equilibrium quantum magnetism. Finally, we conclude with a brief discussion of the future prospects for studies of strongly interacting dipolar molecules.
We demonstrate a scheme for direct absorption imaging of an ultracold ground-state polar molecular gas near quantum degeneracy. A challenge in imaging molecules is the lack of closed optical cycling transitions. Our technique relies on photon shot-noise limited absorption imaging on a strong bound-bound molecular transition. We present a systematic characterization of this imaging technique. Using this technique combined with time-of-flight (TOF) expansion, we demonstrate the capability to determine momentum and spatial distributions for the molecular gas. We anticipate that this imaging technique will be a powerful tool for studying molecular quantum gases.