Do you want to publish a course? Click here

Direct absorption imaging of ultracold polar molecules

215   0   0.0 ( 0 )
 Added by Jun Ye
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a scheme for direct absorption imaging of an ultracold ground-state polar molecular gas near quantum degeneracy. A challenge in imaging molecules is the lack of closed optical cycling transitions. Our technique relies on photon shot-noise limited absorption imaging on a strong bound-bound molecular transition. We present a systematic characterization of this imaging technique. Using this technique combined with time-of-flight (TOF) expansion, we demonstrate the capability to determine momentum and spatial distributions for the molecular gas. We anticipate that this imaging technique will be a powerful tool for studying molecular quantum gases.



rate research

Read More

Quantum states with long-lived coherence are essential for quantum computation, simulation and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational ground state are an excellent candidate for encoding and storing quantum information. However, it is important to understand all sources of decoherence for these qubits, and then eliminate them, in order to reach the longest possible coherence times. Here, we fully characterise the dominant mechanisms for decoherence of a storage qubit in an optically trapped ultracold gas of RbCs molecules using high-resolution Ramsey spectroscopy. Guided by a detailed understanding of the hyperfine structure of the molecule, we tune the magnetic field to where a pair of hyperfine states have the same magnetic moment. These states form a qubit, which is insensitive to variations in magnetic field. Our experiments reveal an unexpected differential tensor light shift between the states, caused by weak mixing of rotational states. We demonstrate how this light shift can be eliminated by setting the angle between the linearly polarised trap light and the applied magnetic field to a magic angle of $arccos{(1/sqrt{3})}approx55^{circ}$. This leads to a coherence time exceeding 6.9 s (90% confidence level). Our results unlock the potential of ultracold molecules as a platform for quantum computation.
104 - Bryce Gadway , Bo Yan 2016
This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole-dipole interactions. Ultracold samples of dipolar molecules with long-range interactions offer a unique platform for quantum simulations and the study of correlated many-body physics. We provide an introduction to the physics of dipolar quantum gases, both electric and magnetic, and summarize the multipronged efforts to bring dipolar molecules into the quantum regime. We discuss in detail the recent experimental progress in realizing and studying strongly interacting systems of polar molecules trapped in optical lattices, with particular emphasis on the study of interacting spin systems and non-equilibrium quantum magnetism. Finally, we conclude with a brief discussion of the future prospects for studies of strongly interacting dipolar molecules.
We investigate the effect of far-off-resonant trapping light on ultracold bosonic RbCs molecules. We use kHz-precision microwave spectroscopy to measure the differential AC Stark shifts between the ground and first excited rotational levels of the molecule with hyperfine-state resolution. We demonstrate through both experiment and theory that coupling between neighboring hyperfine states manifests in rich structure with many avoided crossings. This coupling may be tuned by rotating the polarization of the linearly polarized trapping light. A combination of spectroscopic and parametric heating measurements allows complete characterization of the molecular polarizability at a wavelength of 1550~nm in both the ground and first excited rotational states.
Starting from weakly bound Feshbach molecules, we demonstrate a two-photon pathway to the dipolar ground state of bi-alkali molecules that involves only singlet-to-singlet optical transitions. This pathway eliminates the search for a suitable intermediate state with sufficient singlet-triplet mixing and the exploration of its hyperfine structure, as is typical for pathways starting from triplet dominated Feshbach molecules. By selecting a Feshbach state with a stretched singlet hyperfine component and controlling the polarization of the excitation laser, we assure coupling to only a single hyperfine component of the $textrm{A}^{1}Sigma^{+}$ excited potential, even if the hyperfine structure is not resolved. Similarly, we address a stretched hyperfine component of the $textrm{X}^{1}Sigma^{+}$ rovibrational ground state, and therefore an ideal three level system is established. We demonstrate this pathway with ${}^{6}textrm{Li}{}^{40}textrm{K}$ molecules. By exploring deeply bound states of the $textrm{A}^{1}Sigma^{+}$ potential, we are able to obtain large and balanced Rabi frequencies for both transitions. This method can be applied to other molecular species.
We present a quantitative, near-term experimental blueprint for the quantum simulation of topological insulators using lattice-trapped ultracold polar molecules. In particular, we focus on the so-called Hopf insulator, which represents a three-dimensional topological state of matter existing outside the conventional tenfold way and crystalline-symmetry-based classifications of topological insulators. Its topology is protected by a emph{linking number} invariant, which necessitates long-range spin-orbit coupled hoppings for its realization. While these ingredients have so far precluded its realization in solid state systems and other quantum simulation architectures, in a companion manuscript [1901.08597] we predict that Hopf insulators can in fact arise naturally in dipolar interacting systems. Here, we investigate a specific such architecture in lattices of polar molecules, where the effective `spin is formed from sublattice degrees of freedom. We introduce two techniques that allow one to optimize dipolar Hopf insulators with large band gaps, and which should also be readily applicable to the simulation of other exotic bandstructures. First, we describe the use of Floquet engineering to control the range and functional form of dipolar hoppings and second, we demonstrate that molecular AC polarizabilities (under circularly polarized light) can be used to precisely tune the resonance condition between different rotational states. To verify that this latter technique is amenable to current generation experiments, we calculate from first principles the AC polarizability for $sigma^+$ light for ${}^{40}$K$^{87}$Rb. Finally, we show that experiments are capable of detecting the unconventional topology of the Hopf insulator by varying the termination of the lattice at its edges, which gives rise to three distinct classes of edge mode spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا