Do you want to publish a course? Click here

Sticky collisions of ultracold RbCs molecules

370   0   0.0 ( 0 )
 Added by Philip Gregory
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding and controlling collisions is crucial to the burgeoning field of ultracold molecules. All experiments so far have observed fast loss of molecules from the trap. However, the dominant mechanism for collisional loss is not well understood when there are no allowed 2-body loss processes. Here we experimentally investigate collisional losses of nonreactive ultracold RbCs molecules, and compare our findings with the sticky collision hypothesis that pairs of molecules form long-lived collision complexes. We demonstrate that loss of molecules occupying their rotational and hyperfine ground state is best described by second-order rate equations, consistent with the expectation for complex-mediated collisions, but that the rate is lower than the limit of universal loss. The loss is insensitive to magnetic field but increases for excited rotational states. We demonstrate that dipolar effects lead to significantly faster loss for an incoherent mixture of rotational states.

rate research

Read More

We investigate the effect of far-off-resonant trapping light on ultracold bosonic RbCs molecules. We use kHz-precision microwave spectroscopy to measure the differential AC Stark shifts between the ground and first excited rotational levels of the molecule with hyperfine-state resolution. We demonstrate through both experiment and theory that coupling between neighboring hyperfine states manifests in rich structure with many avoided crossings. This coupling may be tuned by rotating the polarization of the linearly polarized trapping light. A combination of spectroscopic and parametric heating measurements allows complete characterization of the molecular polarizability at a wavelength of 1550~nm in both the ground and first excited rotational states.
We demonstrate microwave dressing on ultracold, fermionic ${}^{23}$Na${}^{40}$K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding three times the $s$-wave unitarity limit. The origin of these collisions is the resonant alignment of the approaching molecules dipoles along the intermolecular axis, which leads to strong attraction. We explain our observations with a conceptually simple two-state picture based on the Condon approximation. Furthermore, we perform coupled-channels calculations that agree well with the experimentally observed collision rates. While collisions are observed here as laser-induced loss, microwave dressing on chemically stable molecules trapped in box potentials may enable the creation of strongly interacting dipolar gases of molecules.
We explore the uses of ultracold molecules as a platform for future experiments in the field of quantum simulation, focusing on two molecular species, $^{40}$Ca$^{19}$F and $^{87}$Rb$^{133}$Cs. We report the development of coherent quantum state control using microwave fields in both molecular species; this is a crucial ingredient for many quantum simulation applications. We demonstrate proof-of-principle Ramsey interferometry measurements with fringe spacings of $sim 1~rm kHz$ and investigate the dephasing time of a superposition of $N=0$ and $N=1$ rotational states when the molecules are confined. For both molecules, we show that a judicious choice of molecular hyperfine states minimises the impact of spatially varying transition-frequency shifts across the trap. For magnetically trapped $^{40}$Ca$^{19}$F we use a magnetically insensitive transition and observe a coherence time of 0.61(3) ms. For optically trapped $^{87}$Rb$^{133}$Cs we exploit an avoided crossing in the AC Stark shift and observe a maximum coherence time of 0.75(6) ms.
We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable $^{23}$Na$^{40}$K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rotational transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, $J{=}1$, we observe collisional lifetimes of more than $3, rm s$, comparable to those in the rovibrational ground state, $J{=}0$. Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements and quantum information processing.
Understanding collisions between ultracold molecules is crucial for making stable molecular quantum gases and harnessing their rich internal degrees of freedom for quantum engineering. Transient complexes can strongly influence collisional physics, but in the ultracold regime, key aspects of their behavior have remained unknown. To explain experimentally observed loss of ground-state molecules from optical dipole traps, it was recently proposed that molecular complexes can be lost due to photo-excitation. By trapping molecules in a repulsive box potential using laser light near a narrow molecular transition, we are able to test this hypothesis with light intensities three orders of magnitude lower than what is typical in red-detuned dipole traps. This allows us to investigate light-induced collisional loss in a gas of nonreactive fermionic $^{23}$Na$^{40}$K molecules. Even for the lowest intensities available in our experiment, our results are consistent with universal loss, meaning unit loss probability inside the short-range interaction potential. Our findings disagree by at least two orders of magnitude with latest theoretical predictions, showing that crucial aspects of molecular collisions are not yet understood, and provide a benchmark for the development of new theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا