Do you want to publish a course? Click here

Coherent Manipulation of the Internal State of Ultracold $^{87}$Rb$^{133}$Cs Molecules with Multiple Microwave Fields

94   0   0.0 ( 0 )
 Added by Jacob Blackmore
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore coherent multi-photon processes in $^{87}$Rb$^{133}$Cs molecules using 3-level lambda and ladder configurations of rotational and hyperfine states, and discuss their relevance to future applications in quantum computation and quantum simulation. In the lambda configuration, we demonstrate the driving of population between two hyperfine levels of the rotational ground state via a two-photon Raman transition. Such pairs of states may be used in the future as a quantum memory, and we measure a Ramsey coherence time for a superposition of these states of 58(9) ms. In the ladder configuration, we show that we can generate and coherently populate microwave dressed states via the observation of an Autler-Townes doublet. We demonstrate that we can control the strength of this dressing by varying the intensity of the microwave coupling field. Finally, we perform spectroscopy of the rotational states of $^{87}$Rb$^{133}$Cs up to $N=6$, highlighting the potential of ultracold molecules for quantum simulation in synthetic dimensions. By fitting the measured transition frequencies we determine a new value of the centrifugal distortion coefficient $D_v=htimes207.3(2)~$Hz.



rate research

Read More

We demonstrate coherent control of both the rotational and hyperfine state of ultracold, chemically stable $^{87}$Rb$^{133}$Cs molecules with external microwave fields. We create a sample of ~2000 molecules in the lowest hyperfine level of the rovibronic ground state N = 0. We measure the transition frequencies to 8 different hyperfine levels of the N = 1 state at two magnetic fields ~23 G apart. We determine accurate values of rotational and hyperfine coupling constants that agree well with previous calculations. We observe Rabi oscillations on each transition, allowing complete population transfer to a selected hyperfine level of N = 1. Subsequent application of a second microwave pulse allows transfer of molecules back to a different hyperfine level of N = 0.
In this paper, we present an electrode geometry for the manipulation of ultracold rovibrational ground state NaK molecules. The electrode system allows to induce a dipole moment in trapped diatomic NaK molecules with a magnitude up to $68 %$ of their internal dipole moment along any direction in a given two-dimensional plane. The strength, the sign and the direction of the induced dipole moment is therefore fully tunable. Furthermore, the possibility to create strong electric field gradients provides the opportunity to address molecules in single layers of an optical lattice. The maximal relative variation of the electric field over the trapping volume is below $10^{-6}$. At the desired electric field value of 10 kV/cm this corresponds to a deviation of 0.01 V/cm. The electrode structure is made of transparent indium tin oxide and combines large optical access for sophisticated optical dipole traps and optical lattice configurations with the possibility to create versatile electric field configurations.
We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable $^{23}$Na$^{40}$K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rotational transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, $J{=}1$, we observe collisional lifetimes of more than $3, rm s$, comparable to those in the rovibrational ground state, $J{=}0$. Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements and quantum information processing.
We report the production of a high phase-space density mixture of $^{87}$Rb and $^{133}$Cs atoms in a levitated crossed optical dipole trap as the first step towards the creation of ultracold RbCs molecules via magneto-association. We present a simple and robust experimental setup designed for the sympathetic cooling of $^{133}$Cs via interspecies elastic collisions with $^{87}$Rb. Working with the $|F=1, m_F=+1 >$ and the $|3, +3 >$ states of $^{87}$Rb and $^{133}$Cs respectively, we measure a high interspecies three-body inelastic collision rate $sim 10^{-25}-10^{-26} rm{cm}^{6}rm{s}^{-1}$ which hinders the sympathetic cooling. Nevertheless by careful tailoring of the evaporation we can produce phase-space densities near quantum degeneracy for both species simultaneously. In addition we report the observation of an interspecies Feshbach resonance at 181.7(5) G and demonstrate the creation of Cs$_{2}$ molecules via magneto-association on the 4g(4) resonance at 19.8 G. These results represent important steps towards the creation of ultracold RbCs molecules in our apparatus.
We report the binding energy of $^{87}$Rb$^{133}$Cs molecules in their rovibrational ground state measured using an offset-free optical frequency comb based on difference frequency generation technology. We create molecules in the absolute ground state using stimulated Raman adiabatic passage (STIRAP) with a transfer efficiency of 88%. By measuring the absolute frequencies of our STIRAP lasers, we find the energy-level difference from an initial weakly-bound Feshbach state to the rovibrational ground state with a resolution of 5 kHz over an energy-level difference of more than 114 THz; this lets us discern the hyperfine splitting of the ground state. Combined with theoretical models of the Feshbach state binding energies and ground-state hyperfine structure, we determine a zero-field binding energy of $htimes114,268,135,237(5)(50)$ kHz. To our knowledge, this is the most accurate determination to date of the dissociation energy of a molecule.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا