No Arabic abstract
Integration between biology and information science benefits both fields. Many related models have been proposed, such as computational visual cognition models, computational motor control models, integrations of both and so on. In general, the robustness and precision of recognition is one of the key problems for object recognition models. In this paper, inspired by features of human recognition process and their biological mechanisms, a new integrated and dynamic framework is proposed to mimic the semantic extraction, concept formation and feature re-selection in human visual processing. The main contributions of the proposed model are as follows: (1) Semantic feature extraction: Local semantic features are learnt from episodic features that are extracted from raw images through a deep neural network; (2) Integrated concept formation: Concepts are formed with local semantic information and structural information learnt through network. (3) Feature re-selection: When ambiguity is detected during recognition process, distinctive features according to the difference between ambiguous candidates are re-selected for recognition. Experimental results on hand-written digits and facial shape dataset show that, compared with other methods, the new proposed model exhibits higher robustness and precision for visual recognition, especially in the condition when input samples are smantic ambiguous. Meanwhile, the introduced biological mechanisms further strengthen the interaction between neuroscience and information science.
Generalization to out-of-distribution data has been a problem for Visual Question Answering (VQA) models. To measure generalization to novel questions, we propose to separate them into skills and concepts. Skills are visual tasks, such as counting or attribute recognition, and are applied to concepts mentioned in the question, such as objects and people. VQA methods should be able to compose skills and concepts in novel ways, regardless of whether the specific composition has been seen in training, yet we demonstrate that existing models have much to improve upon towards handling new compositions. We present a novel method for learning to compose skills and concepts that separates these two factors implicitly within a model by learning grounded concept representations and disentangling the encoding of skills from that of concepts. We enforce these properties with a novel contrastive learning procedure that does not rely on external annotations and can be learned from unlabeled image-question pairs. Experiments demonstrate the effectiveness of our approach for improving compositional and grounding performance.
Machine-learning-based age estimation has received lots of attention. Traditional age estimation mechanism focuses estimation age error, but ignores that there is a deviation between the estimated age and real age due to disease. Pathological age estimation mechanism the author proposed before introduces age deviation to solve the above problem and improves classification capability of the estimated age significantly. However,it does not consider the age estimation error of the normal control (NC) group and results in a larger error between the estimated age and real age of NC group. Therefore, an integrated age estimation mechanism based on Decision-Level fusion of error and deviation orientation model is proposed to solve the problem.Firstly, the traditional age estimation and pathological age estimation mechanisms are weighted together.Secondly, their optimal weights are obtained by minimizing mean absolute error (MAE) between the estimated age and real age of normal people. In the experimental section, several representative age-related datasets are used for verification of the proposed method. The results show that the proposed age estimation mechanism achieves a good tradeoff effect of age estimation. It not only improves the classification ability of the estimated age, but also reduces the age estimation error of the NC group. In general, the proposed age estimation mechanism is effective. Additionally, the mechanism is a framework mechanism that can be used to construct different specific age estimation algorithms, contributing to relevant research.
Attention mechanism has demonstrated great potential in fine-grained visual recognition tasks. In this paper, we present a counterfactual attention learning method to learn more effective attention based on causal inference. Unlike most existing methods that learn visual attention based on conventional likelihood, we propose to learn the attention with counterfactual causality, which provides a tool to measure the attention quality and a powerful supervisory signal to guide the learning process. Specifically, we analyze the effect of the learned visual attention on network prediction through counterfactual intervention and maximize the effect to encourage the network to learn more useful attention for fine-grained image recognition. Empirically, we evaluate our method on a wide range of fine-grained recognition tasks where attention plays a crucial role, including fine-grained image categorization, person re-identification, and vehicle re-identification. The consistent improvement on all benchmarks demonstrates the effectiveness of our method. Code is available at https://github.com/raoyongming/CAL
3D multi-object tracking is an important component in robotic perception systems such as self-driving vehicles. Recent work follows a tracking-by-detection pipeline, which aims to match past tracklets with detections in the current frame. To avoid matching with false positive detections, prior work filters out detections with low confidence scores via a threshold. However, finding a proper threshold is non-trivial, which requires extensive manual search via ablation study. Also, this threshold is sensitive to many factors such as target object category so we need to re-search the threshold if these factors change. To ease this process, we propose to automatically select high-quality detections and remove the efforts needed for manual threshold search. Also, prior work often uses a single threshold per data sequence, which is sub-optimal in particular frames or for certain objects. Instead, we dynamically search threshold per frame or per object to further boost performance. Through experiments on KITTI and nuScenes, our method can filter out $45.7%$ false positives while maintaining the recall, achieving new S.O.T.A. performance and removing the need for manually threshold tuning.
Text-based visual question answering (VQA) requires to read and understand text in an image to correctly answer a given question. However, most current methods simply add optical character recognition (OCR) tokens extracted from the image into the VQA model without considering contextual information of OCR tokens and mining the relationships between OCR tokens and scene objects. In this paper, we propose a novel text-centered method called RUArt (Reading, Understanding and Answering the Related Text) for text-based VQA. Taking an image and a question as input, RUArt first reads the image and obtains text and scene objects. Then, it understands the question, OCRed text and objects in the context of the scene, and further mines the relationships among them. Finally, it answers the related text for the given question through text semantic matching and reasoning. We evaluate our RUArt on two text-based VQA benchmarks (ST-VQA and TextVQA) and conduct extensive ablation studies for exploring the reasons behind RUArts effectiveness. Experimental results demonstrate that our method can effectively explore the contextual information of the text and mine the stable relationships between the text and objects.