No Arabic abstract
Machine-learning-based age estimation has received lots of attention. Traditional age estimation mechanism focuses estimation age error, but ignores that there is a deviation between the estimated age and real age due to disease. Pathological age estimation mechanism the author proposed before introduces age deviation to solve the above problem and improves classification capability of the estimated age significantly. However,it does not consider the age estimation error of the normal control (NC) group and results in a larger error between the estimated age and real age of NC group. Therefore, an integrated age estimation mechanism based on Decision-Level fusion of error and deviation orientation model is proposed to solve the problem.Firstly, the traditional age estimation and pathological age estimation mechanisms are weighted together.Secondly, their optimal weights are obtained by minimizing mean absolute error (MAE) between the estimated age and real age of normal people. In the experimental section, several representative age-related datasets are used for verification of the proposed method. The results show that the proposed age estimation mechanism achieves a good tradeoff effect of age estimation. It not only improves the classification ability of the estimated age, but also reduces the age estimation error of the NC group. In general, the proposed age estimation mechanism is effective. Additionally, the mechanism is a framework mechanism that can be used to construct different specific age estimation algorithms, contributing to relevant research.
Increased interest of scientists, producers and consumers in sheep identification has been stimulated by the dramatic increase in population and the urge to increase productivity. The world population is expected to exceed 9.6 million in 2050. For this reason, awareness is raised towards the necessity of effective livestock production. Sheep is considered as one of the main of food resources. Most of the research now is directed towards developing real time applications that facilitate sheep identification for breed management and gathering related information like weight and age. Weight and age are key matrices in assessing the effectiveness of production. For this reason, visual analysis proved recently its significant success over other approaches. Visual analysis techniques need enough images for testing and study completion. For this reason, collecting sheep images database is a vital step to fulfill such objective. We provide here datasets for testing and comparing such algorithms which are under development. Our collected dataset consists of 416 color images for different features of sheep in different postures. Images were collected fifty two sheep at a range of year from three months to six years. For each sheep, two images were captured for both sides of the body, two images for both sides of the face, one image from the top view, one image for the hip and one image for the teeth. The collected images cover different illumination, quality levels and angle of rotation. The allocated data set can be used to test sheep identification, weigh estimation, and age detection algorithms. Such algorithms are crucial for disease management, animal assessment and ownership.
Integration between biology and information science benefits both fields. Many related models have been proposed, such as computational visual cognition models, computational motor control models, integrations of both and so on. In general, the robustness and precision of recognition is one of the key problems for object recognition models. In this paper, inspired by features of human recognition process and their biological mechanisms, a new integrated and dynamic framework is proposed to mimic the semantic extraction, concept formation and feature re-selection in human visual processing. The main contributions of the proposed model are as follows: (1) Semantic feature extraction: Local semantic features are learnt from episodic features that are extracted from raw images through a deep neural network; (2) Integrated concept formation: Concepts are formed with local semantic information and structural information learnt through network. (3) Feature re-selection: When ambiguity is detected during recognition process, distinctive features according to the difference between ambiguous candidates are re-selected for recognition. Experimental results on hand-written digits and facial shape dataset show that, compared with other methods, the new proposed model exhibits higher robustness and precision for visual recognition, especially in the condition when input samples are smantic ambiguous. Meanwhile, the introduced biological mechanisms further strengthen the interaction between neuroscience and information science.
Automatic height and age estimation of speakers using acoustic features is widely used for the purpose of human-computer interaction, forensics, etc. In this work, we propose a novel approach of using attention mechanism to build an end-to-end architecture for height and age estimation. The attention mechanism is combined with Long Short-Term Memory(LSTM) encoder which is able to capture long-term dependencies in the input acoustic features. We modify the conventionally used Attention -- which calculates context vectors the sum of attention only across timeframes -- by introducing a modified context vector which takes into account total attention across encoder units as well, giving us a new cross-attention mechanism. Apart from this, we also investigate a multi-task learning approach for jointly estimating speaker height and age. We train and test our model on the TIMIT corpus. Our model outperforms several approaches in the literature. We achieve a root mean square error (RMSE) of 6.92cm and6.34cm for male and female heights respectively and RMSE of 7.85years and 8.75years for male and females ages respectively. By tracking the attention weights allocated to different phones, we find that Vowel phones are most important whistlestop phones are least important for the estimation task.
Human face aging is irreversible process causing changes in human face characteristics such us hair whitening, muscles drop and wrinkles. Due to the importance of human face aging in biometrics systems, age estimation became an attractive area for researchers. This paper presents a novel method to estimate the age from face images, using binarized statistical image features (BSIF) and local binary patterns (LBP)histograms as features performed by support vector regression (SVR) and kernel ridge regression (KRR). We applied our method on FG-NET and PAL datasets. Our proposed method has shown superiority to that of the state-of-the-art methods when using the whole PAL database.
Estimation of bone age from hand radiographs is essential to determine skeletal age in diagnosing endocrine disorders and depicting the growth status of children. However, existing automatic methods only apply their models to test images without considering the discrepancy between training samples and test samples, which will lead to a lower generalization ability. In this paper, we propose an adversarial regression learning network (ARLNet) for bone age estimation. Specifically, we first extract bone features from a fine-tuned Inception V3 neural network and propose regression percentage loss for training. To reduce the discrepancy between training and test data, we then propose adversarial regression loss and feature reconstruction loss to guarantee the transition from training data to test data and vice versa, preserving invariant features from both training and test data. Experimental results show that the proposed model outperforms state-of-the-art methods.