No Arabic abstract
The low energy physics of both graphene and surface states of three-dimensional topological insulators is described by gapless Dirac fermions with linear dispersion. In this work, we predict the emergence of a heavy Dirac fermion in a graphene/topological insulator hetero-junction, where the linear term almost vanishes and the corresponding energy dispersion becomes highly non-linear. By combining {it ab initio} calculations and an effective low-energy model, we show explicitly how strong hybridization between Dirac fermions in graphene and the surface states of topological insulators can reduce the Fermi velocity of Dirac fermions. Due to the negligible linear term, interaction effects will be greatly enhanced and can drive heavy Dirac fermion states into the half quantum Hall state with non-zero Hall conductance.
We study theoretically the electrical current and low-frequency noise for a linear Josephson junction structure on a topological insulator, in which the superconductor forms a closed ring and currents are injected from normal regions inside and outside the ring. We find that this geometry offers a signature for the presence of gapless 1D Majorana fermion modes that are predicted in the channel when the phase difference phi, controlled by the magnetic flux through the ring, is pi. We show that for low temperature the linear conductance jumps when phi passes through pi, accompanied by non-local correlations between the currents from the inside and outside of the ring. We compute the dependence of these features on temperature, voltage and linear dimensions, and discuss the implications for experiments.
The recent theoretical prediction and experimental realization of topological insulators (TI) has generated intense interest in this new state of quantum matter. The surface states of a three-dimensional (3D) TI such as Bi_2Te_3, Bi_2Se_3 and Sb_2Te_3 consist of a single massless Dirac cones. Crossing of the two surface state branches with opposite spins in the materials is fully protected by the time reversal (TR) symmetry at the Dirac points, which cannot be destroyed by any TR invariant perturbation. Recent advances in thin-film growth have permitted this unique two-dimensional electron system (2DES) to be probed by scanning tunneling microscopy (STM) and spectroscopy (STS). The intriguing TR symmetry protected topological states were revealed in STM experiments where the backscattering induced by non-magnetic impurities was forbidden. Here we report the Landau quantization of the topological surface states in Bi_2Se_3 in magnetic field by using STM/STS. The direct observation of the discrete Landau levels (LLs) strongly supports the 2D nature of the topological states and gives direct proof of the nondegenerate structure of LLs in TI. We demonstrate the linear dispersion of the massless Dirac fermions by the square-root dependence of LLs on magnetic field. The formation of LLs implies the high mobility of the 2DES, which has been predicted to lead to topological magneto-electric effect of the TI.
Kondo insulators are primary candidates in the search for strongly correlated topological quantum phases, which may host topological order, fractionalization, and non-Abelian statistics. Within some Kondo insulators, the hybridization gap is predicted to protect a nontrivial topological invariant and to harbor emergent heavy Dirac fermion surface modes. We use high-energy-resolution spectroscopic imaging in real and momentum space on the Kondo insulator, SmB$_6$. On cooling through $T^*_{Delta}approx$ 35 K we observe the opening of an insulating gap that expands to $Deltaapprox$ 10 meV at 2 K. Within the gap, we image the formation of linearly dispersing surface states with effective masses reaching $m^* = (410pm20)m_e$. We thus demonstrate existence of a strongly correlated topological Kondo insulator phase hosting the heaviest known Dirac fermions.
We experimentally investigate the effect of electron temperature on transport in the two-dimensional Dirac surface states of the three-dimensional topological insulator HgTe. We find that around the minimal conductivity point, where both electrons and holes are present, heating the carriers with a DC current results in a non-monotonic differential resistance of narrow channels. We show that the observed initial increase in resistance can be attributed to electron-hole scattering, while the decrease follows naturally from the change in Fermi energy of the charge carriers. Both effects are governed dominantly by a van Hove singularity in the bulk valence band. The results demonstrate the importance of interband electron-hole scattering in the transport properties of topological insulators.
Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi_2Se_3 in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9times10^16cm^-3, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the u =1 Landau level attained by a field of 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.