Do you want to publish a course? Click here

Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge

126   0   0.0 ( 0 )
 Added by Xiaopeng Li
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the many-body localization aspects of single-particle mobility edges in fermionic systems. We investigate incommensurate lattices and random disorder Anderson models. Many-body localization and quantum nonergodic properties are studied by comparing entanglement and thermal entropy, and by calculating the scaling of subsystem particle number fluctuations, respectively. We establish a nonergodic extended phase as a generic intermediate phase (between purely ergodic extended and nonergodic localized phases) for the many-body localization transition of non-interacting fermions where the entanglement entropy manifests a volume law (`extended), but there are large fluctuations in the subsystem particle numbers (`nonergodic). We argue such an intermediate phase scenario may continue holding even for the many-body localization in the presence of interactions as well. We find for many-body states in non-interacting 1d Aubry-Andre and 3d Anderson models that the entanglement entropy density and the normalized particle-number fluctuation have discontinuous jumps at the localization transition where the entanglement entropy is sub-thermal but obeys the volume law. In the vicinity of the localization transition we find that both the entanglement entropy and the particle number fluctuations obey a single parameter scaling. We argue using numerical and theoretical results that such a critical scaling behavior should persist for the interacting many-body localization problem with important consequences. Our work provides persuasive evidence in favor of there being two transitions in many-body systems with single-particle mobility edges, the first one indicating a transition from the purely localized nonergodic many-body localized phase to a nonergodic extended many-body metallic phase, and the second one being a transition eventually to the usual ergodic many-body extended phase.



rate research

Read More

We experimentally study many-body localization (MBL) with ultracold atoms in a weak one-dimensional quasiperiodic potential, which in the noninteracting limit exhibits an intermediate phase that is characterized by a mobility edge. We measure the time evolution of an initial charge density wave after a quench and analyze the corresponding relaxation exponents. We find clear signatures of MBL, when the corresponding noninteracting model is deep in the localized phase. We also critically compare and contrast our results with those from a tight-binding Aubry-Andr{e} model, which does not exhibit a single-particle intermediate phase, in order to identify signatures of a potential many-body intermediate phase.
A single-particle mobility edge (SPME) marks a critical energy separating extended from localized states in a quantum system. In one-dimensional systems with uncorrelated disorder, a SPME cannot exist, since all single-particle states localize for arbitrarily weak disorder strengths. However, if correlations are present in the disorder potential, the localization transition can occur at a finite disorder strength and SPMEs become possible. In this work, we find experimental evidence for the existence of such a SPME in a one-dimensional quasi-periodic optical lattice. Specifically, we find a regime where extended and localized single-particle states coexist, in good agreement with theoretical simulations, which predict a SPME in this regime.
We study the matrix elements of local and nonlocal operators in the single-particle eigenstates of two paradigmatic quantum-chaotic quadratic Hamiltonians; the quadratic Sachdev-Ye-Kitaev (SYK2) model and the three-dimensional Anderson model below the localization transition. We show that they display eigenstate thermalization for normalized observables. Specifically, we show that the diagonal matrix elements exhibit vanishing eigenstate-to-eigenstate fluctuations, and a variance proportional to the inverse Hilbert space dimension. We also demonstrate that the ratio between the variance of the diagonal and the off-diagonal matrix elements is $2$, as predicted by the random matrix theory. We study distributions of matrix elements of observables and establish that they need not be Gaussian. We identify the class of observables for which the distributions are Gaussian.
We consider a non-interacting many-fermion system populating levels of a unitary random matrix ensemble (equivalent to the q=2 complex Sachdev-Ye-Kitaev model) - a generic model of single-particle quantum chaos. We study the corresponding many-particle level statistics by calculating the spectral form factor analytically using algebraic methods of random matrix theory, and match it with an exact numerical simulation. Despite the integrability of the theory, the many-body spectral rigidity is found to have a surprisingly rich landscape. In particular, we find a residual repulsion of distant many-body levels stemming from single-particle chaos, together with islands of level attraction. These results are encoded in an exponential ramp in the spectral form-factor, which we show to be a universal feature of non-ergodic many-fermion systems embedded in a chaotic medium.
In this paper, we look at four generalizations of the one dimensional Aubry-Andre-Harper (AAH) model which possess mobility edges. We map out a phase diagram in terms of population imbalance, and look at the system size dependence of the steady state imbalance. We find non-monotonic behaviour of imbalance with system parameters, which contradicts the idea that the relaxation of an initial imbalance is fixed only by the ratio of number of extended states to number of localized states. We propose that there exists dimensionless parameters, which depend on the fraction of single particle localized states, single particle extended states and the mean participation ratio of these states. These ingredients fully control the imbalance in the long time limit and we present numerical evidence of this claim. Among the four models considered, three of them have interesting duality relations and their location of mobility edges are known. One of the models (next nearest neighbour coupling) has no known duality but mobility edge exists and the model has been experimentally realized. Our findings are an important step forward to understanding non-equilibrium phenomena in a family of interesting models with incommensurate potentials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا