Do you want to publish a course? Click here

Imbalance for a family of one-dimensional incommensurate models with mobility edges

181   0   0.0 ( 0 )
 Added by Manas Kulkarni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we look at four generalizations of the one dimensional Aubry-Andre-Harper (AAH) model which possess mobility edges. We map out a phase diagram in terms of population imbalance, and look at the system size dependence of the steady state imbalance. We find non-monotonic behaviour of imbalance with system parameters, which contradicts the idea that the relaxation of an initial imbalance is fixed only by the ratio of number of extended states to number of localized states. We propose that there exists dimensionless parameters, which depend on the fraction of single particle localized states, single particle extended states and the mean participation ratio of these states. These ingredients fully control the imbalance in the long time limit and we present numerical evidence of this claim. Among the four models considered, three of them have interesting duality relations and their location of mobility edges are known. One of the models (next nearest neighbour coupling) has no known duality but mobility edge exists and the model has been experimentally realized. Our findings are an important step forward to understanding non-equilibrium phenomena in a family of interesting models with incommensurate potentials.

rate research

Read More

We report the observation of a metal-insulator transition in a two-dimensional electron gas in silicon. By applying substrate bias, we have varied the mobility of our samples, and observed the creation of the metallic phase when the mobility was high enough ($mu ~> 1 m^2/Vs$), consistent with the assertion that this transition is driven by electron-electron interactions. In a perpendicular magnetic field, the magnetoconductance is positive in the vicinity of the transition, but negative elsewhere. Our experiment suggests that such behavior results from a decrease of the spin-dependent part of the interaction in the vicinity of the transition.
We investigate the wave packet dynamics for a one-dimensional incommensurate optical lattice with a special on-site potential which exhibits the mobility edge in a compactly analytic form. We calculate the density propagation, long-time survival probability and mean square displacement of the wave packet in the regime with the mobility edge and compare with the cases in extended, localized and multifractal regimes. Our numerical results indicate that the dynamics in the mobility-edge regime mix both extended and localized features which is quite different from that in the mulitfractal phase. We utilize the Loschmidt echo dynamics by choosing different eigenstates as initial states and sudden changing the parameters of the system to distinguish the phases in the presence of such system.
166 - Tong Liu , Xu Xia , Stefano Longhi 2021
Mobility edges, separating localized from extended states, are known to arise in the single-particle energy spectrum of disordered systems in dimension strictly higher than two and certain quasiperiodic models in one dimension. Here we unveil a different class of mobility edges, dubbed anomalous mobility edges, that separate bands of localized states from bands of critical states in diagonal and off-diagonal quasiperiodic models. We first introduce an exactly solvable quasi-periodic diagonal model and analytically demonstrate the existence of anomalous mobility edges. Moreover, numerical multifractal analysis of the corresponding wave functions confirms the emergence of a finite band of critical states. We then extend the sudy to a quasiperiodic off-diagonal Su-Schrieffer-Heeger model and show numerical evidence of anomalous mobility edges. We finally discuss possible experimental realizations of quasi-periodic models hosting anomalous mobility edges. These results shed new light on the localization and critical properties of low-dimensional systems with aperiodic order.
Current quantum devices execute specific tasks that are hard for classical computers and have the potential to solve problems such as quantum simulation of material science and chemistry, even without error correction. For practical applications it is highly desirable to reconfigure the connectivity of the device, which for superconducting quantum processors is determined at fabrication. In addition, we require a careful design of control lines and couplings to resonators for measurements. Therefore, it is a cumbersome and slow undertaking to fabricate a new device for each problem we want to solve. Here we periodically drive a one-dimensional chain to engineer effective Hamiltonians that simulate arbitrary connectivities. We demonstrate the capability of our method by engineering driving sequences to simulate star, all-to-all, and ring connectivities. We also simulate a minimal example of the 3-SAT problem including three-body interactions, which are difficult to realize experimentally. Our results open a new paradigm to perform quantum simulation in near term quantum devices by enabling us to stroboscopically simulate arbitrary Hamiltonians with a single device and optimized driving sequences
The Anderson localization transition is one of the most well studied examples of a zero temperature quantum phase transition. On the other hand, many open questions remain about the phenomenology of disordered systems driven far out of equilibrium. Here we study the localization transition in the prototypical three-dimensional, noninteracting Anderson model when the system is driven at its boundaries to induce a current carrying non-equilibrium steady state. Recently we showed that the diffusive phase of this model exhibits extensive mutual information of its non-equilibrium steady-state density matrix. We show that that this extensive scaling persists in the entanglement and at the localization critical point, before crossing over to a short-range (area-law) scaling in the localized phase. We introduce an entanglement witness for fermionic states that we name the mutual coherence, which, for fermionic Gaussian states, is also a lower bound on the mutual information. Through a combination of analytical arguments and numerics, we determine the finite-size scaling of the mutual coherence across the transition. These results further develop the notion of entanglement phase transitions in open systems, with direct implications for driven many-body localized systems, as well as experimental studies of driven-disordered systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا