Do you want to publish a course? Click here

Many-body level statistics of single-particle quantum chaos

181   0   0.0 ( 0 )
 Added by Yunxiang Liao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a non-interacting many-fermion system populating levels of a unitary random matrix ensemble (equivalent to the q=2 complex Sachdev-Ye-Kitaev model) - a generic model of single-particle quantum chaos. We study the corresponding many-particle level statistics by calculating the spectral form factor analytically using algebraic methods of random matrix theory, and match it with an exact numerical simulation. Despite the integrability of the theory, the many-body spectral rigidity is found to have a surprisingly rich landscape. In particular, we find a residual repulsion of distant many-body levels stemming from single-particle chaos, together with islands of level attraction. These results are encoded in an exponential ramp in the spectral form-factor, which we show to be a universal feature of non-ergodic many-fermion systems embedded in a chaotic medium.

rate research

Read More

We investigate spectral statistics in spatially extended, chaotic many-body quantum systems with a conserved charge. We compute the spectral form factor $K(t)$ analytically for a minimal Floquet circuit model that has a $U(1)$ symmetry encoded via auxiliary spin-$1/2$ degrees of freedom. Averaging over an ensemble of realizations, we relate $K(t)$ to a partition function for the spins, given by a Trotterization of the spin-$1/2$ Heisenberg ferromagnet. Using Bethe Ansatz techniques, we extract the Thouless time $t^{vphantom{*}}_{rm Th}$ demarcating the extent of random matrix behavior, and find scaling behavior governed by diffusion for $K(t)$ at $tlesssim t^{vphantom{*}}_{rm Th}$. We also report numerical results for $K(t)$ in a generic Floquet spin model, which are consistent with these analytic predictions.
It is suggested that many-body quantum chaos appears as spontaneous symmetry breaking of unitarity in interacting quantum many-body systems. It has been shown that many-body level statistics, probed by the spectral form factor (SFF) defined as $K(beta,t)=langle|{rm Tr}, exp(-beta H + itH)|^2rangle$, is dominated by a diffusion-type mode in a field theory analysis. The key finding of this paper is that the unitary $beta=0$ case is different from the $beta to 0^+$ limit, with the latter leading to a finite mass of these modes due to interactions. This mass suppresses a rapid exponential ramp in the SFF, which is responsible for the fast emergence of Poisson statistics in the non-interacting case, and gives rise to a non-trivial random matrix structure of many-body levels. The interaction-induced mass in the SFF shares similarities with the dephasing rate in the theory of weak localization and the Lyapunov exponent of the out-of-time-ordered correlators.
We study the consequences of having translational invariance in space and in time in many-body quantum chaotic systems. We consider an ensemble of random quantum circuits, composed of single-site random unitaries and nearest neighbour couplings, as a minimal model of translational invariant many-body quantum chaotic systems. We evaluate the spectral form factor (SFF) as a sum over many-body Feynman diagrams, which simplifies in the limit of large local Hilbert space dimension $q$. At sufficiently large $t$, diagrams corresponding to rigid translations dominate, reproducing the random matrix theory (RMT) prediction. At finite $t$, we show that translational invariance introduces an additional mechanism which delays the emergence of RMT. Specifically, we identify two universality classes characterising the approach to RMT: in $d=1$, corrections to RMT are generated by different translations applied to extended domains, known as the crossed diagrams; in $d>1$, corrections are the consequence of deranged defects diagrams, whose defects are dilute and localized due to confinement. We introduce a scaling limit of SFF where these universality classes reduce to simple scaling functions. Lastly, we demonstrate universality of the scaling forms with numerical simulations of two circuit models and discuss the validity of the large $q$ limit in the different cases.
Characterizing states of matter through the lens of their ergodic properties is a fascinating new direction of research. In the quantum realm, the many-body localization (MBL) was proposed to be the paradigmatic ergodicity breaking phenomenon, which extends the concept of Anderson localization to interacting systems. At the same time, random matrix theory has established a powerful framework for characterizing the onset of quantum chaos and ergodicity (or the absence thereof) in quantum many-body systems. Here we numerically study the spectral statistics of disordered interacting spin chains, which represent prototype models expected to exhibit MBL. We study the ergodicity indicator $g=log_{10}(t_{rm H}/t_{rm Th})$, which is defined through the ratio of two characteristic many-body time scales, the Thouless time $t_{rm Th}$ and the Heisenberg time $t_{rm H}$, and hence resembles the logarithm of the dimensionless conductance introduced in the context of Anderson localization. We argue that the ergodicity breaking transition in interacting spin chains occurs when both time scales are of the same order, $t_{rm Th} approx t_{rm H}$, and $g$ becomes a system-size independent constant. Hence, the ergodicity breaking transition in many-body systems carries certain analogies with the Anderson localization transition. Intriguingly, using a Berezinskii-Kosterlitz-Thouless correlation length we observe a scaling solution of $g$ across the transition, which allows for detection of the crossing point in finite systems. We discuss the observation that scaled results in finite systems by increasing the system size exhibit a flow towards the quantum chaotic regime.
We investigate the spectral and transport properties of many-body quantum systems with conserved charges and kinetic constraints. Using random unitary circuits, we compute ensemble-averaged spectral form factors and linear-response correlation functions, and find that their characteristic time scales are given by the inverse gap of an effective Hamiltonian$-$or equivalently, a transfer matrix describing a classical Markov process. Our approach allows us to connect directly the Thouless time, $t_{text{Th}}$, determined by the spectral form factor, to transport properties and linear response correlators. Using tensor network methods, we determine the dynamical exponent, $z$, for a number of constrained, conserving models. We find universality classes with diffusive, subdiffusive, quasilocalized, and localized dynamics, depending on the severity of the constraints. In particular, we show that quantum systems with Fredkin constraints exhibit anomalous transport with dynamical exponent $z simeq 8/3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا