Do you want to publish a course? Click here

A Rn-220 source for the calibration of low-background experiments

70   0   0.0 ( 0 )
 Added by Rafael Florian Lang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterize two 40 kBq sources of electrodeposited Th-228 for use in low-background experiments. The sources efficiently emanate Rn-220, a noble gas that can diffuse in a detector volume. Rn-220 and its daughter isotopes produce alpha, beta, and gamma-radiation, which may used to calibrate a variety of detector responses and features, before decaying completely in only a few days. We perform various tests to place limits on the release of other long-lived isotopes. In particular, we find an emanation of <0.008 atoms/min/kBq (90% CL) for Th-228 and 1.53 atoms/min/kBq for Ra-224. The sources lend themselves in particular to the calibration of detectors employing liquid noble elements such as argon and xenon. With the source mounted in a noble gas system, we demonstrate that filters are highly efficient in reducing the activity of these longer-lived isotopes further. We thus confirm the suitability of these sources even for use in next-generation experiments, such as XENON1T/XENONnT, LZ, and nEXO.



rate research

Read More

Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10^-5 counts/(kg y keV) in the region of interest around the Q value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of 22Na, 26Al, 226Ra and 228Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.
Nuclear recoil backgrounds are one of the most dangerous backgrounds for many dark matter experiments. A primary source of nuclear recoils is radiogenic neutrons produced in the detector material itself. These neutrons result from fission and $(alpha,n)$ reactions originating from uranium and thorium contamination. In this paper, we discuss neutron yields from these sources. We compile a list of $(alpha,n)$ yields for many materials common in low-background detectors, calculated using NeuCBOT, a new tool introduced in this paper, available at https://github.com/shawest/neucbot. These calculations are compared to computations made using data compilations and SOURCES-4A
Ultra-low-background experiments address some of the most important open questions in particle physics, cosmology and astrophysics: the nature of dark matter, whether the neutrino is its own antiparticle, and does the proton decay. These rare event searches require well-understood and minimized backgrounds. Simulations are used to understand backgrounds caused by naturally occurring radioactivity in the rock and in every piece of shielding and detector material used in these experiments. Most important are processes like spontaneous fission and ({alpha},n) reactions in material close to the detectors that can produce neutrons. A comparison study between two dedicated software packages is detailed. The cross section libraries, neutron yields, and spectra from the Mei-Zhang-Hime and the SOURCES-4A codes are presented. The resultant yields and spectra are used as inputs to direct dark matter detector toy models in GEANT4, to study the impact of their differences on background estimates and fits. Although differences in neutron yield calculations up to 50% were seen, there was no systematic difference between the Mei-Hime-Zhang and SOURCES-4A results. Neutron propagation simulations smooth differences in spectral shape and yield, and both tools were found to meet the broad requirements of the low-background community.
A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220/Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t = 293.9+-(1.0)+-(0.6) ns.
The study of low-yield effects requires not only good quality of the original data but also puts high requirements for their processing procedures to increase the efficiency of the selection of useful events. The exploiting of the large cylindrical proportional counters electrostatic topology allows improving the extrapolation of information about the primary ionization of a multipoint event. Long-term calibration measurements with an external $^{109}$Cd-source allowed the development of a new method for analyzing the pulse shape from a sizeable proportional counter. Optimized analysis of the currents pulse shape from the electron cloud of primary ionization in the counter improved the resolution and energy calibration. As a result, the efficiency of selecting useful events was increased by 25%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا