Do you want to publish a course? Click here

Aluminum as a source of background in low background experiments

123   0   0.0 ( 0 )
 Added by Bela Majorovits
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10^-5 counts/(kg y keV) in the region of interest around the Q value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of 22Na, 26Al, 226Ra and 228Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.



rate research

Read More

PEN is an industrial polyester plastic which has become interesting for the physics community as a new type of plastic scintillator. PEN scintillates in the blue regime, which is ideal for most photosensor devices. In addition, PEN has excellent mechanical properties and very good radiopurity has been achieved. Thus, it is an ideal candidate for active structural components in low-background experiments. One possible application are holders for germanium detectors operating in cryogenic liquids (LAr, LN2). Such structures can help to reject surface and external backgrounds, boosting the sensitivity of experiments. In this contribution, the R&D on PEN is outlined and an evaluation of the first production of PEN structures for the LEGEND-200 experiment is reported.
We characterize two 40 kBq sources of electrodeposited Th-228 for use in low-background experiments. The sources efficiently emanate Rn-220, a noble gas that can diffuse in a detector volume. Rn-220 and its daughter isotopes produce alpha, beta, and gamma-radiation, which may used to calibrate a variety of detector responses and features, before decaying completely in only a few days. We perform various tests to place limits on the release of other long-lived isotopes. In particular, we find an emanation of <0.008 atoms/min/kBq (90% CL) for Th-228 and 1.53 atoms/min/kBq for Ra-224. The sources lend themselves in particular to the calibration of detectors employing liquid noble elements such as argon and xenon. With the source mounted in a noble gas system, we demonstrate that filters are highly efficient in reducing the activity of these longer-lived isotopes further. We thus confirm the suitability of these sources even for use in next-generation experiments, such as XENON1T/XENONnT, LZ, and nEXO.
We report a novel correlated background in the antineutrino detection using the inverse beta decay reaction. Spontaneous fissions and $(alpha,n)$ reactions in peripheral materials of the antineutrino detector, such as borosilicate glass of photomultipliers, produce fast neutrons and prompt gamma rays. If the shielding from the material to the detector target were not thick enough, neutrons and gammas could enter the target volume and mimic antineutrino signals. This paper revisits the yields and energy spectra of neutrons produced in B$(alpha,n)$N and F$(alpha,n)$Na reactions. A Geant4 based simulation has been carried out using a simplified detector geometry for the present generation reactor neutrino experiments. The background rates in these experiments are estimated. If this background was not taken into account, the value of the neutrino mixing angle $sin^22theta_{13}$ would be underestimated. We recommend that Daya Bay, RENO, Double Chooz, and JUNO, carefully examine the masses and radiopurity levels of detector materials that are close to the target and rich in boron and fluorine.
209 - J. G. Garza , S. Aune , D. Calvet 2015
Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micromegas detectors for the CERN Axion Solar Telescope (CAST), including technological pathfinder activities for the future International Axion Observatory (IAXO). The use of low background techniques and the application of discrimination algorithms based on the high granularity of the readout have led to background levels below 10$^{-6}$ counts/keV/cm$^2$/s, more than a factor 100 lower than the first generation of Micromegas detectors. The best levels achieved at the Canfranc Underground Laboratory (LSC) are as low as 10$^{-7}$ counts/keV/cm$^2$/s, showing good prospects for the application of this technology in IAXO. The current background model, based on underground and surface measurements, is presented, as well as the strategies to further reduce the background level. Finally, we will describe the R&D paths to achieve sub-keV energy thresholds, which could broaden the physics case of axion helioscopes.
Nuclear recoil backgrounds are one of the most dangerous backgrounds for many dark matter experiments. A primary source of nuclear recoils is radiogenic neutrons produced in the detector material itself. These neutrons result from fission and $(alpha,n)$ reactions originating from uranium and thorium contamination. In this paper, we discuss neutron yields from these sources. We compile a list of $(alpha,n)$ yields for many materials common in low-background detectors, calculated using NeuCBOT, a new tool introduced in this paper, available at https://github.com/shawest/neucbot. These calculations are compared to computations made using data compilations and SOURCES-4A
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا