Do you want to publish a course? Click here

Sub-Megahertz Single Photon Source

117   0   0.0 ( 0 )
 Added by Markus Rambach
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report 100% duty cycle generation of sub-MHz single photon pairs at the Rubidium D$_1$ line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity crosscorrelation function exhibits a bandwidth of $666 pm 16$ kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. These photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.



rate research

Read More

We studied the optical properties of a resonantly excited trivalent Er ensemble in Si accessed via in situ single photon detection. A novel approach which avoids nanofabrication on the sample is introduced, resulting in a highly efficient detection of 70 excitation frequencies, of which 63 resonances have not been observed in literature. The center frequencies and optical lifetimes of all resonances have been extracted, showing that 5% of the resonances are within 1 GHz of our electrically detected resonances and that the optical lifetimes range from 0.5 ms up to 1.5 ms. We observed inhomogeneous broadening of less than 400 MHz and an upper bound on the homogeneous linewidth of 1.4 MHz and 0.75 MHz for two separate resonances, which is a reduction of more than an order of magnitude observed to date. These narrow optical transition properties show that Er in Si is an excellent candidate for future quantum information and communication applications.
A promising result from optical quantum metrology is the ability to achieve sub-shot-noise performance in transmission or absorption measurements. This is due to the significantly lower uncertainty in light intensity of quantum beams with respect to their classical counterparts. In this work, we simulate the outcome of an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion (SPDC) followed by a time multiplexing set-up with a binary temporal division strategy, considering several types of experimental losses. With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance. We compare the numerical results with two paradigmatic limits: the shot-noise limit (achieved using coherent sources) and the quantum limit (obtained with an ideal photon-number Fock state as the input source). We also investigate conditions in which threshold detectors can be used, and the effect of input light fluctuations on the measurement error. Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors, with improvement factors that range from 1.5 to 2. This technique would allow measurements of optical absorption of a sample with reasonable uncertainty using ultra-low light intensity and minimum disruption of biological or other fragile specimens.
82 - T. Gaebel , I. Popa , A. Gruber 2004
Owing to their unsurpassed photostability, defects in solids may be ideal candidates for single photon sources. Here we report on generation of single photons by optical excitation of a yet unexplored defect in diamond, the nickel-nitrogen complex (NE8) centre. The most striking feature of the defect is its emission bandwidth of 1.2 nm at room temperature. The emission wavelength of the defect is around 800 nm, which is suitable for telecom fibres. In addition, in this spectral region little background light from the diamond bulk material is detected. Consequently, a high contrast in antibunching measurements is achieved.
We propose a technique capable of imaging a distinct physical object with sub-Rayleigh resolution in an ordinary far-field imaging setup using single-photon sources and linear optical tools only. We exemplify our method for the case of a rectangular aperture and two or four single-photon emitters obtaining a resolution enhanced by a factor of two or four, respectively.
We studied intensity fluctuations of a single photon source relying on the pulsed excitation of the fluorescence of a single molecule at room temperature. We directly measured the Mandel parameter Q(T) over 4 orders of magnitude of observation timescale T, by recording every photocount. On timescale of a few excitation periods, subpoissonian statistics is clearly observed and the probablility of two-photons events is 10 times smaller than Poissonian pulses. On longer times, blinking in the fluorescence, due to the molecular triplet state, produces an excess of noise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا