Do you want to publish a course? Click here

Scheme for sub-shot-noise transmission measurement using a time multiplexed single-photon source

399   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A promising result from optical quantum metrology is the ability to achieve sub-shot-noise performance in transmission or absorption measurements. This is due to the significantly lower uncertainty in light intensity of quantum beams with respect to their classical counterparts. In this work, we simulate the outcome of an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion (SPDC) followed by a time multiplexing set-up with a binary temporal division strategy, considering several types of experimental losses. With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance. We compare the numerical results with two paradigmatic limits: the shot-noise limit (achieved using coherent sources) and the quantum limit (obtained with an ideal photon-number Fock state as the input source). We also investigate conditions in which threshold detectors can be used, and the effect of input light fluctuations on the measurement error. Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors, with improvement factors that range from 1.5 to 2. This technique would allow measurements of optical absorption of a sample with reasonable uncertainty using ultra-low light intensity and minimum disruption of biological or other fragile specimens.



rate research

Read More

Harnessing the unique properties of quantum mechanics offers the possibility to deliver new technologies that can fundamentally outperform their classical counterparts. These technologies only deliver advantages when components operate with performance beyond specific thresholds. For optical quantum metrology, the biggest challenge that impacts on performance thresholds is optical loss. Here we demonstrate how including an optical delay and an optical switch in a feed-forward configuration with a stable and efficient correlated photon pair source reduces the detector efficiency required to enable quantum enhanced sensing down to the detection level of single photons. When the switch is active, we observe a factor of improvement in precision of 1.27 for transmission measurement on a per input photon basis, compared to the performance of a laser emitting an ideal coherent state and measured with the same detection efficiency as our setup. When the switch is inoperative, we observe no quantum advantage.
Scalable photonic quantum technologies require highly efficient sources of single photons on demand. Although much progress has been done in the field within the last decade, the requirements impose stringent conditions on the efficiency of such devices. One of the most promising approaches is to multiplex a single or several heralded photon sources into temporal modes. In this work we analyze a specific proposal to synchronize photons from a continuous source with an external reference clock using imperfect optical switches, which necessarily degrade the ideal behavior of the devised arrangement. The performance of the source as a sub-poissonian light emitter is studied taking into account losses in the multiplexing arrangement, detector efficiency and dark counts. We estimate a fivefold increase in the single photon probability achieved for 0.5 dB loss switches.
We report 100% duty cycle generation of sub-MHz single photon pairs at the Rubidium D$_1$ line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity crosscorrelation function exhibits a bandwidth of $666 pm 16$ kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. These photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.
134 - Yang Gao , Hwang Lee 2008
Phase measurement using a lossless Mach-Zehnder interferometer with certain entangled $N$-photon states can lead to a phase sensitivity of the order of 1/N, the Heisenberg limit. However, previously considered output measurement schemes are different for different input states to achieve this limit. We show that it is possible to achieve this limit just by the parity measurement for all the commonly proposed entangled states. Based on the parity measurement scheme, the reductions of the phase sensitivity in the presence of photon loss are examined for the various input states.
Heralded single photon source (HSPS) is an important way in generating genuine single photon, having advantages of experimental simplicity and versatility. However, HSPS intrinsically suffers from the trade-off between the heralded single photon rate and the single photon purity. To overcome this, one can apply multiplexing technology in different degrees of freedom to enhance the performance of HSPS. Here, by employing spectral multiplexing and active feed-forward spectral manipulating, we demonstrate a HSPS at 1.5 {mu}m telecom-band. Our experimental results show that the spectral multiplexing effectively erases the frequency correlation of pair source and significantly improves the heralded single photon rate while keeping the g{^(^2^)}(0) as low as 0.0006{pm}0.0001. The Hong-Ou-Mandel interference between the heralded single photons and photons from an independent weak coherent source indicates a high indistinguishability. Our results pave a way for scalable HSPS by spectral multiplexing towards deterministic single photon emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا