No Arabic abstract
Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b (K10b), and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c (K10c). Using 220 radial velocities (RVs), including 72 precise RVs from Keck-HIRES of which 20 are new from 2014-2015, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that K10b (Rp=1.47 Re) has mass 3.72$pm$0.42 Me and density 6.46$pm$0.73 g/cc. Modeling the interior of K10b as an iron core overlaid with a silicate mantle, we find that the iron core constitutes 0.17$pm$0.11 of the planet mass. For K10c (Rp=2.35 Re) we measure Mp=13.98$pm$1.79 Me and $rho$=5.94$pm$0.76 g/cc, significantly lower than the mass computed in Dumusque et al. (2014, 17.2$pm$1.9 Me). Internal compositional modeling reveals that at least $10%$ of the radius of Kepler-10c is a volatile envelope composed of hydrogen-helium ($0.2%$ of the mass, $16%$ of the radius) or super-ionic water ($28%$ of the mass, $29%$ of the radius). Analysis of only HIRES data yields a higher mass for K10b and a lower mass for K10c than does analysis of the HARPS-N data alone, with the mass estimates for K10c formally inconsistent by 3$sigma$. Splitting the RVs from each instrument leads to inconsistent measurements for the mass of planet c in each data set. This suggests that time-correlated noise is present and that the uncertainties in the planet masses (especially K10c) exceed our formal estimates. Transit timing variations (TTVs) of K10c indicate the likely presence of a third planet in the system, KOI-72.X. The TTVs and RVs are consistent with KOI-72.X having an orbital period of 24, 71, or 101 days, and a mass from 1-7 Me.
The search for Earth-like planets around Sun-like stars and the evaluation of their occurrence rate is a major topic of research for the exoplanetary community. Two key characteristics in defining a planet as Earth-like are having a radius between 1 and 1.75 times the Earths radius and orbiting inside the host stars habitable zone; the measurement of the planets radius and related error is however possible only via transit observations and is highly dependent on the precision of the host stars radius. A major improvement in the determination of stellar radius is represented by the unprecedented precision on parallax measurements provided by the Gaia astrometry satellite. We present a new estimate of the frequency of Earth-sized planets orbiting inside the host starss habitable zones, obtained using Gaia measurements of parallax for solar-type stars hosting validated planets in the Kepler field as input for reassessing the values of planetary radius and incident stellar flux. This updated occurrence rate can usefully inform future observational efforts searching for Earth-like system in the Sun backyard using a variety of techniques such as the spectrograph ESPRESSO, the space observatory PLATO and the proposed astrometric satellite Theia.
The Kepler mission has detected a number of transiting circumbinary planets (CBPs). Although currently not detected, exomoons could be orbiting some of these CBPs, and they might be suitable for harboring life. A necessary condition for the existence of such exomoons is their long-term dynamical stability. Here, we investigate the stability of exomoons around the Kepler CBPs using numerical $N$-body integrations. We determine regions of stability and obtain stability maps in the (a_m,i_pm) plane, where a_m is the initial exolunar semimajor axis with respect to the CBP, and i_pm is the initial inclination of the orbit of the exomoon around the planet with respect to the orbit of the planet around the stellar binary. Ignoring any dependence on i_pm, for most Kepler CBPs the stability regions are well described by the location of the 1:1 mean motion commensurability of the binary orbit with the orbit of the moon around the CBP. This is related to a destabilizing effect of the binary compared to the case if the binary were replaced by a single body, and which is borne out by corresponding 3-body integrations. For high inclinations, the evolution is dominated by Lidov-Kozai oscillations, which can bring moons in dynamically stable orbits to close proximity within the CBP, triggering strong interactions such as tidal evolution, tidal disruption, or direct collisions. This suggests that there is a dearth of highly-inclined exomoons around the Kepler CBPs, whereas coplanar exomoons are dynamically allowed.
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities for all of the transiting planets (41 of 42 have a false-positive probability under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than 3X the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planets mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify 6 planets with densities above 5 g/cc, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than ~2 R_earth. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).
In the Solar system the planets compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal, and that planets orbits can change substantially after their formation. Here we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10%, and densities differing by a factor of 8. One planet is likely a rocky `super-Earth, whereas the other is more akin to Neptune. These planets are thirty times more closely spaced--and have a larger density contrast--than any adjacent pair of planets in the Solar system.
We investigated the discrepancy between planetary mass determination using the transit timing variations (TTVs) and radial velocities (RVs), by analysing the multi-planet system Kepler-9. Despite being the first system characterised with TTVs, there are several discrepant solutions in the literature, with those reporting lower planetary densities being apparently in disagreement with high-precision RV observations. To resolve this, we gathered HARPS-N RVs at epochs that maximised the difference between the predicted RV curves from discrepant solutions in the literature. We also re-analysed the full Kepler data-set and performed a dynamical fit, within a Bayesian framework, using the newly derived central and duration times of the transits. We compared these results with the RV data and found that our solution better describes the RV observations, despite the masses of the planets being nearly half that presented in the discovery paper. We therefore confirm that the TTV method can provide mass determinations that agree with those determined using high-precision RVs. The low densities of the planets place them in the scarcely populated region of the super-Neptunes / inflated sub-Saturns in the mass-radius diagram.