Do you want to publish a course? Click here

Solitons in the Crossover between Band Insulator and Mott Insulator: Application to TTF-Chloranil under Pressure

61   0   0.0 ( 0 )
 Added by Masao Ogata
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the Phase Hamiltonian, two types of solitons are found to exist in the crossover region between band insulator and Mott insulator in one-dimension. Both of these solitons have fractional charges but with different spins, zero and 1/2, respectively. The results are in accord with the experimental results by Kanoda et al. for TTF-Chloranil under pressure.



rate research

Read More

We report a detailed spectroscopic study of the pressure induced neutral-ionic phase transition (NIT) of the mixed-stack charge-transfer (CT) crystal tetrathiafulvalene-chloranil (TTF-CA). We show that the pressure induced phase transition is still first-order and involves the presence of an intermediate disordered phase, defined by the coexistence of two species of different ionicity. Further application of pressure gradually converts this phase into an homogeneous ferroelectric phase with a single ionicity. In addition, we detect strong pretransitional phenomena which anticipate the intermediate phase and are indicative of a precursor dynamic regime dominated by fluctuations.
Recently discovered class of 2D materials based on transition metal phosphorous trichalcogenides exhibit antiferromagnetic ground state, with potential applications in spintronics. Amongst them, FePS$ _{3} $ is a Mott insulator with a band gap of $sim$ 1.5 eV. This study using Raman spectroscopy along with first-principles density functional theoretical analysis examines the stability of its structure and electronic properties under pressure. Raman spectroscopy reveals two phase transitions at 4.6 GPa and 12 GPa marked by the changes in pressure coefficients of the mode frequencies and the number of symmetry allowed modes. FePS$_3$ transforms from the ambient monoclinic C2/m phase with a band gap of 1.54 eV to another monoclinic C2/m (band gap of 0.1 eV) phase at 4.6 GPa, followed by another transition at 12 GPa to the metallic trigonal P-31m phase. Our work complements recently reported high pressure X-ray diffraction studies.
We report the suppression of the magnetic phase transition in La1-xCaxMnO3 close to the localized-to-itinerant electronic transition, i.e. at x = 0.2 and x = 0.5. A new crossover temperature Tf can be defined for these compositions instead of TC. Unlike in common continuous magnetic phase transition the susceptibility does not diverge at Tf and a spontaneous magnetization cannot be defined below it. We propose that the proximity to the doping-induced metal-insulator transition introduces a random field which breaks up the electronic/magnetic homogeneity of the system and explains these effects.
122 - Y. D. Wang , W. L. Yao , Z. M. Xin 2020
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics that support a quantum spin liquid state.Here, we determine the electronic and structural properties of 1T-TaS$_2$ using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2$pi$/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS$_2$ is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS$_2$ only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the materials electronic properties.
413 - J. Zhu , J. L. Zhang , P. P. Kong 2013
Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2Se3 topological compound or a Bi2Te3 topological compound at high pressure. Here we report the discovery of superconductivity in the topological compound Sb2Te3 when pressure was applied. The crystal structure analysis results reveal that superconductivity at a low-pressure range occurs at the ambient phase. The Hall coefficient measurements indicate the change of p-type carriers at a low-pressure range within the ambient phase, into n-type at higher pressures, showing intimate relation to superconducting transition temperature. The first principle calculations based on experimental measurements of the crystal lattice show that Sb2Te3 retains its Dirac surface states within the low-pressure ambient phase where superconductivity was observed, which indicates a strong relationship between superconductivity and topology nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا