We report the suppression of the magnetic phase transition in La1-xCaxMnO3 close to the localized-to-itinerant electronic transition, i.e. at x = 0.2 and x = 0.5. A new crossover temperature Tf can be defined for these compositions instead of TC. Unlike in common continuous magnetic phase transition the susceptibility does not diverge at Tf and a spontaneous magnetization cannot be defined below it. We propose that the proximity to the doping-induced metal-insulator transition introduces a random field which breaks up the electronic/magnetic homogeneity of the system and explains these effects.
Rutile ($R$) phase VO$_2$ is a quintessential example of a strongly correlated bad-metal, which undergoes a metal-insulator transition (MIT) concomitant with a structural transition to a V-V dimerized monoclinic phase below T$_{MIT} sim 340K$. It has been experimentally shown that one can control this transition by doping VO$_2$. In particular, doping with oxygen vacancies ($V_O$) has been shown to completely suppress this MIT {em without} any structural transition. We explain this suppression by elucidating the influence of oxygen-vacancies on the electronic-structure of the metallic $R$ phase VO$_2$, explicitly treating strong electron-electron correlations using dynamical mean-field theory (DMFT) as well as diffusion Monte Carlo (DMC) flavor of quantum Monte Carlo (QMC) techniques. We show that $V_O$s tend to change the V-3$d$ filling away from its nominal half-filled value, with the $e_{g}^{pi}$ orbitals competing with the otherwise dominant $a_{1g}$ orbital. Loss of this near orbital polarization of the $a_{1g}$ orbital is associated with a weakening of electron correlations, especially along the V-V dimerization direction. This removes a charge-density wave (CDW) instability along this direction above a critical doping concentration, which further suppresses the metal-insulator transition. Our study also suggests that the MIT is predominantly driven by a correlation-induced CDW instability along the V-V dimerization direction.
Superconductivity in cuprates peaks in the doping regime between a metal at high p and an insulator at low p. Understanding how the material evolves from metal to insulator is a fundamental and open question. Early studies in high magnetic fields revealed that below some critical doping an insulator-like upturn appears in the resistivity of cuprates at low temperature, but its origin has remained a puzzle. Here we propose that this metal-to-insulator crossover is due to a drop in carrier density n associated with the onset of the pseudogap phase at a critical doping p*. We use high-field resistivity measurements on LSCO to show that the upturns are quantitatively consistent with a drop from n=1+p above p* to n=p below p*, in agreement with high-field Hall data in YBCO. We demonstrate how previously reported upturns in the resistivity of LSCO, YBCO and Nd-LSCO are explained by the same universal mechanism: a drop in carrier density by 1.0 hole per Cu atom.
The capability to control the type and amount of charge carriers in a material and, in the extreme case, the transition from metal to insulator is one of the key challenges of modern electronics. By employing angle resolved photoemission spectroscopy (ARPES) we find that a reversible metal to insulator transition and a fine tuning of the charge carriers from electrons to holes can be achieved in epitaxial bilayer and single layer graphene by molecular doping. The effects of electron screening and disorder are also discussed. These results demonstrate that epitaxial graphene is suitable for electronics applications, as well as provide new opportunities for studying the hole doping regime of the Dirac cone in graphene.
The gigantic reduction of the electric resistivity under the applied magnetic field, CMR effect, is now widely accepted to appear in the vicinity of the insulator to metal transition of the perovskite manganites. Recently, we have discovered the first order transition from ferromagnetic metal to insulator in $rm La_{0.88}Sr_{0.12}MnO_3$ of the CMR manganite. This phase transition induces the tremendous increase of the resistivity under the external magnetic field just near above the phase transition temperature. We report here fairly detailed results from the systematic experiments including neutron and synchrotron X-ray scattering studies.
It was recently reported that a continuous electric current is a powerful control parameter to trigger changes in the electronic structure and metal-insulator transitions (MITs) in Ca2RuO4. However, the spatial evolution of the MIT and the implications of the unavoidable Joule heating have not been clarified yet, often hindered by the difficulty to asses the local sample temperature. In this work, we perform infrared thermal imaging on single-crystal Ca2RuO4 while controlling the MIT by electric current. The change in emissivity at the phase transition allows us to monitor the gradual formation and expansion of metallic phase upon increasing current. Our local temperature measurements indicate that, within our experimental resolution, the MIT always occurs at the same local transition temperatures, irrespectively if driven by temperature or by current. Our results highlight the importance of local heating, phase coexistence, and microscale inhomogeneity when studying strongly correlated materials under the flow of electric current.
F. Rivadulla
,J. Rivas
,J. B. Goodenough
.
(2003)
.
"Suppression of the Magnetic Phase Transition in Manganites Close to the Metal-Insulator Crossover"
.
Francisco Rivadulla Fernandez
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا