Do you want to publish a course? Click here

Raman and first-principles study of the pressure induced Mott-insulator to metal transition in bulk FePS$_3$

207   0   0.0 ( 0 )
 Added by Subhadip Das
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently discovered class of 2D materials based on transition metal phosphorous trichalcogenides exhibit antiferromagnetic ground state, with potential applications in spintronics. Amongst them, FePS$ _{3} $ is a Mott insulator with a band gap of $sim$ 1.5 eV. This study using Raman spectroscopy along with first-principles density functional theoretical analysis examines the stability of its structure and electronic properties under pressure. Raman spectroscopy reveals two phase transitions at 4.6 GPa and 12 GPa marked by the changes in pressure coefficients of the mode frequencies and the number of symmetry allowed modes. FePS$_3$ transforms from the ambient monoclinic C2/m phase with a band gap of 1.54 eV to another monoclinic C2/m (band gap of 0.1 eV) phase at 4.6 GPa, followed by another transition at 12 GPa to the metallic trigonal P-31m phase. Our work complements recently reported high pressure X-ray diffraction studies.



rate research

Read More

A pressure-induced simultaneous metal-insulator transition (MIT) and structural-phase transformation in lithium hydride with about 1% volume collapse has been predicted by means of the local density approximation (LDA) in conjunction with an all-electron GW approximation method. The LDA wrongly predicts that the MIT occurs before the structural phase transition. As a byproduct, it is shown that only the use of the generalized-gradient approximation together with the zero-point vibration produces an equilibrium lattice parameter, bulk modulus, and an equation of state that are in excellent agreement with experimental results.
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
We performed a first-principles study of the structural, vibrational, electronic and magnetic properties of NaMnF3 under applied isotropic pressure. We found that NaMnF3 undergoes a reconstructive phase transition at 8 GPa from the Pnma distorted perovskite structure toward the Cmcm post-perovskite structure. This is confirmed by a sudden change of the Mn-F-Mn bondings where the crystal goes from corner shared octahedra in the Pnma phase to edge shared octahedra in the Cmcm phase. The magnetic ordering also changes from a G-type antiferromagnetic ordering in the Pnma phase to a C-type antiferromagnetic ordering in the Cmcm phase. Interestingly, we found that the high-spin d-orbital filling is kept at the phase transition which has never been observed in the known magnetic post-perovskite structures. We also found a highly non-collinear magnetic ordering in the Cmcm post-perovskite phase that drives a large ferromagnetic canting of the spins. We discuss the validity of these results with respect to the U and J parameter of the GGA+U exchange correlation functional used in our study and conclude that large spin canting is a promising property of the post-perovskite fluoride compounds.
85 - Di Wang , Feng Tang , Yongping Du 2017
In 5d transition metal oxides, novel properties arise from the interplay of electron correlations and spin--orbit interactions. Na4IrO4, where 5d transition-metal Ir atom occupies the center of the square-planar coordination environment, is synthesized. Based on density functional theory, we calculate its electronic and magnetic properties. Our numerical results show that the Ir-5d bands are quite narrow, and the bands around the Fermi level are mainly contributed by d_{xy},d_{yz} and d_{zx} orbitals. The magnetic easy-axis is perpendicular to the IrO4 plane, and the magnetic anisotropy energy (MAE) of Na4IrO4 is found to be very giant. We estimate the magnetic parameters by mapping the calculated total energy for different spin configurations onto a spin model. The next nearest neighbor exchange interaction J2 is much larger than other intersite exchange interactions and results in the magnetic ground state configuration. Our study clearly demonstrates that the huge MAE comes from the single-ion anisotropy rather than the anisotropic interatomic spin exchange. This compound has a large spin gap but very narrow spin-wave dispersion, due to the large single-ion anisotropy and relatively small exchange couplings. Noticing this remarkable magnetic feature originated from its highly isolated IrO4 moiety, we also explore the possiblity to further enhance the MAE.
The capability to control the type and amount of charge carriers in a material and, in the extreme case, the transition from metal to insulator is one of the key challenges of modern electronics. By employing angle resolved photoemission spectroscopy (ARPES) we find that a reversible metal to insulator transition and a fine tuning of the charge carriers from electrons to holes can be achieved in epitaxial bilayer and single layer graphene by molecular doping. The effects of electron screening and disorder are also discussed. These results demonstrate that epitaxial graphene is suitable for electronics applications, as well as provide new opportunities for studying the hole doping regime of the Dirac cone in graphene.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا