No Arabic abstract
Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.
Dirac particle represents a fundamental constituent of our nature. Simulation of Dirac particle dynamics by a controllable quantum system using quantum walks will allow us to investigate the non-classical nature of dynamics in its discrete form. In this work, starting from a modified version of one-spatial dimensional general inhomogeneous split-step discrete quantum walk we derive an effective Hamiltonian which mimics a single massive Dirac particle dynamics in curved $(1+1)$ space-time dimension coupled to $U(1)$ gauge potential---which is a forward step towards the simulation of the unification of electromagnetic and gravitational forces in lower dimension and at the single particle level. Implementation of this simulation scheme in simple qubit-system has been demonstrated. We show that the same Hamiltonian can represent $(2+1)$ space-time dimensional Dirac particle dynamics when one of the spatial momenta remains fixed. We also discuss how we can include $U(N)$ gauge potential in our scheme, in order to capture other fundamental force effects on the Dirac particle. The emergence of curvature in the two-particle split-step quantum walk has also been investigated while the particles are interacting through their entangled coin operations.
We show that the Dirac quantum cellular automaton [Ann. Phys. 354 (2015) 244] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter, which plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long term probability distribution. It is shown that, starting from localized conditions, the asymptotic value of the entropy of entanglement between internal and motional degrees of freedom overcomes the known limit that is approached by the quantum walk for the same initial conditions, and are similar to the ones achieved by highly localized states of the Dirac equation.
We analytically diagonalize a discrete-time on-site interacting fermionic cellular automaton in the two-particle sector. Important features of the solutions sensibly differ from those of analogous Hamiltonian models. In particular, we found a wider variety of scattering processes, we have bound states for every value of the total momentum, and there exist bound states also in the free case, where the coupling constant is null.
This paper studies the spectrum of a multi-dimensional split-step quantum walk with a defect that cannot be analysed in the previous papers. To this end, we have developed a new technique which allow us to use a spectral mapping theorem for the one-defect model. We also derive the time-averaged limit measure for one-dimensional case as an application of the spectral analysis.
We build a quantum cellular automaton (QCA) which coincides with 1+1 QED on its known continuum limits. It consists in a circuit of unitary gates driving the evolution of particles on a one dimensional lattice, and having them interact with the gauge field on the links. The particles are massive fermions, and the evolution is exactly U(1) gauge-invariant. We show that, in the continuous-time discrete-space limit, the QCA converges to the Kogut-Susskind staggered version of 1+1 QED. We also show that, in the continuous spacetime limit and in the free one particle sector, it converges to the Dirac equation, a strong indication that the model remains accurate in the relativistic regime.