No Arabic abstract
We analytically diagonalize a discrete-time on-site interacting fermionic cellular automaton in the two-particle sector. Important features of the solutions sensibly differ from those of analogous Hamiltonian models. In particular, we found a wider variety of scattering processes, we have bound states for every value of the total momentum, and there exist bound states also in the free case, where the coupling constant is null.
We show that the Dirac quantum cellular automaton [Ann. Phys. 354 (2015) 244] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter, which plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long term probability distribution. It is shown that, starting from localized conditions, the asymptotic value of the entropy of entanglement between internal and motional degrees of freedom overcomes the known limit that is approached by the quantum walk for the same initial conditions, and are similar to the ones achieved by highly localized states of the Dirac equation.
Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.
We construct a three-dimensional quantum cellular automaton (QCA), an automorphism of the local operator algebra on a lattice of qubits, which disentangles the ground state of the Walker-Wang three fermion model. We show that if this QCA can be realized by a quantum circuit of constant depth, then there exists a two-dimensional commuting projector Hamiltonian which realizes the three fermion topological order which is widely believed not to be possible. We conjecture in accordance with this belief that this QCA is not a quantum circuit of constant depth, and we provide two further pieces of evidence to support the conjecture. We show that this QCA maps every local Pauli operator to a local Pauli operator, but is not a Clifford circuit of constant depth. Further, we show that if the three-dimensional QCA can be realized by a quantum circuit of constant depth, then there exists a two-dimensional QCA acting on fermionic degrees of freedom which cannot be realized by a quantum circuit of constant depth; i.e., we prove the existence of a nontrivial QCA in either three or two dimensions. The square of our three-dimensional QCA can be realized by a quantum circuit of constant depth, and this suggests the existence of a $mathbb{Z}_2$ invariant of a QCA in higher dimensions, totally distinct from the classification by positive rationals (i.e., by one integer index for each prime) in one dimension. In an appendix, unrelated to the main body of this paper, we give a fermionic generalization of a result of Bravyi and Vyalyi on ground states of 2-local commuting Hamiltonians.
Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems.
Quantum phases of matter are resources for notions of quantum computation. In this work, we establish a new link between concepts of quantum information theory and condensed matter physics by presenting a unified understanding of symmetry-protected topological (SPT) order protected by subsystem symmetries and its relation to measurement-based quantum computation (MBQC). The key unifying ingredient is the concept of quantum cellular automata (QCA) which we use to define subsystem symmetries acting on rigid lower-dimensional lines or fractals on a 2D lattice. Notably, both types of symmetries are treated equivalently in our framework. We show that states within a non-trivial SPT phase protected by these symmetries are indicated by the presence of the same QCA in a tensor network representation of the state, thereby characterizing the structure of entanglement that is uniformly present throughout these phases. By also formulating schemes of MBQC based on these QCA, we are able to prove that most of the phases we construct are computationally universal phases of matter, in which every state is a resource for universal MBQC. Interestingly, our approach allows us to construct computational phases which have practical advantages over previous examples, including a computational speedup. The significance of the approach stems from constructing novel computationally universal phases of matter and showcasing the power of tensor networks and quantum information theory in classifying subsystem SPT order.